
System and Network

Security

Based on original slides by

- Silberschatz, Galvin and Gagne

- Kurose and Ross

2

Objectives

• To discuss security threats and attacks

• To explain the fundamentals of encryption,

authentication, and hashing

• To examine the uses of cryptography in

computing

▪ Secrecy

▪ Message Integrity

▪ Digital Signature

▪ Authentication

• To describe the various countermeasures to

security attacks

3

The Security Problem

• System secure if resources used and accessed

as intended under all circumstances

▪ Unachievable

• Intruders (crackers) attempt to breach security

• Threat is potential security violation

• Attack is attempt to breach security

• Attack can be accidental or malicious

• Easier to protect against accidental than

malicious misuse

4

Security Violation Categories

• Breach of confidentiality

▪ Unauthorized reading of data

• Breach of integrity

▪ Unauthorized modification of data

• Breach of availability

▪ Unauthorized destruction of data

• Theft of service

▪ Unauthorized use of resources

• Denial of service (DOS)

▪ Prevention of legitimate use

5

Security Violation Methods

• Masquerading (breach authentication)

▪ Pretending to be an authorized user to escalate privileges

• Replay attack

▪ As is or with message modification

• Man-in-the-middle attack

▪ Intruder sits in data flow, masquerading as sender to receiver

and vice versa

• Session hijacking

▪ Intercept an already-established session to bypass

authentication

• Privilege escalation

▪ Common attack type with access beyond what a user or

resource is supposed to have

6

Standard Security Attacks

7

Security Measure Levels

• Impossible to have absolute security, but make cost to perpetrator

sufficiently high to deter most intruders

• Security must occur at four levels to be effective:

▪ Physical

 Data centers, servers, connected terminals

▪ Application

 Benign or malicious apps can cause security problems

▪ Operating System

 Protection mechanisms, debugging

▪ Network

 Intercepted communications, interruption, DOS

• Security is as weak as the weakest link in the chain

• Humans a risk too via phishing and social-engineering attacks

• But can too much security be a problem?

8

Program Threats

• Many variations, many names

• Trojan Horse

▪ Code segment that misuses its environment

▪ Exploits mechanisms for allowing programs written by users to be

executed by other users

▪ Spyware, pop-up browser windows, covert channels

▪ Up to 80% of spam delivered by spyware-infected systems

• Trap Door

▪ Specific user identifier or password that circumvents normal

security procedures

▪ Could be included in a compiler

▪ How to detect them?

9

Program Threats (Cont.)

• Malware - Software designed to exploit, disable, or damage computer

• Trojan Horse – Program that acts in a clandestine manner

▪ Spyware – Program frequently installed with legitimate software

to display adds, capture user data

▪ Ransomware – locks up data via encryption, demanding

payment to unlock it

• Others include logic bombs

• All try to violate the Principle of Least Privilege

• Goal frequently is to leave behind Remote Access Tool (RAT) for

repeated access

10

C Program with Buffer-overflow Condition

#include <stdio.h>

#define BUFFER_SIZE 256

int main(int argc, char *argv[])

{

char buffer[BUFFER_SIZE];

if (argc < 2)

return -1;

else {

strcpy(buffer,argv[1]);

return 0;

}

}

11

C Program without Buffer-overflow Condition

#include <stdio.h>

#define BUFFER_SIZE 256

int main(int argc, char *argv[])

{

char buffer[BUFFER_SIZE];

if (argc < 2)

return -1;

else {

strncpy(buffer, argv[1], sizeof(buffer)-1);

return 0;

}

}

12

Layout of Typical Stack Frame

13

Modified Shell Code

#include <stdio.h>

int main(int argc, char *argv[])

{

execvp(‘‘\bin\sh’’,‘‘\bin \sh’’, NULL);

return 0;

}

14

Hypothetical Stack Frame

Before attack After attack

15

Great Programming Required?

• For the first step of determining the bug, and second step

of writing exploit code, yes

• Script kiddies can run pre-written exploit code to attack a

given system

• Attack code can get a shell with the processes’ owner’s

permissions

▪ Or open a network port, delete files, download a

program, etc

• Depending on bug, attack can be executed across a

network using allowed connections, bypassing firewalls

• Buffer overflow can be disabled by disabling stack

execution or adding bit to page table to indicate “non-

executable” state

▪ Available in SPARC and x86

16

Program Threats (Cont.)

• Viruses

▪ Code fragment embedded in legitimate program

▪ Self-replicating, designed to infect other computers

▪ Very specific to CPU architecture, operating system, applications

▪ Usually borne via email or as a macro

e.g. Macro to reformat hard drive

17

Program Threats (Cont.)

• Virus dropper inserts virus onto the system

• Many categories of viruses, literally many thousands of
viruses

▪ File / parasitic

▪ Boot / memory

▪ Macro

▪ Source code

▪ Polymorphic to avoid having a virus signature

▪ Encrypted

▪ Stealth

▪ Tunneling

▪ Multipartite

▪ Armored

18

A Boot-sector Computer Virus

19

The Threat Continues

• Attacks still common, still occurring

• Attacks moved over time from science experiments to tools of

organized crime

▪ Targeting specific companies

▪ Creating botnets to use as tool for spam and DDOS delivery

▪ Keystroke logger to grab passwords, credit card numbers

• Why is Windows the target for most attacks?

▪ Most common

▪ Everyone is an administrator

▪ Monoculture considered harmful

20

System and Network Threats

• Some systems “open” rather than secure by default

▪ Reduce attack surface

▪ But harder to use, more knowledge needed to administer

• Network threats harder to detect, prevent

▪ Protection systems weaker

▪ More difficult to have a shared secret on which to base access

▪ No physical limits once system attached to internet

 Or on network with system attached to internet

▪ Even determining location of connecting system difficult

 IP address is only knowledge

21

System and Network Threats (Cont.)

• Worms – use spawn mechanism; standalone program

• Internet worm

▪ Exploited UNIX networking features (remote access) and bugs

in finger and sendmail programs

▪ Exploited trust-relationship mechanism used by rsh to access

friendly systems without use of password

▪ Grappling hook program uploaded main worm program

 99 lines of C code

▪ Hooked system then uploaded main code, tried to attack

connected systems

▪ Also tried to break into other users accounts on local system via

password guessing

▪ If target system already infected, abort, except for every 7th time

22

The Morris Internet Worm

23

System and Network Threats (Cont.)

• Port scanning

▪ Automated attempt to connect to a range of ports on one

or a range of IP addresses

▪ Detection of answering service protocol

▪ Detection of OS and version running on system

▪ nmap scans all ports in a given IP range for a response

▪ nessus has a database of protocols and bugs (and

exploits) to apply against a system

▪ Frequently launched from zombie systems

 To decrease trace-ability

24

System and Network Threats (Cont.)

• Denial of Service

▪ Overload the targeted computer preventing it from doing any

useful work

▪ Distributed denial-of-service (DDOS) come from multiple

sites at once

▪ Consider the start of the IP-connection handshake (SYN)

 How many started-connections can the OS handle?

 SYN Flooding

▪ Consider traffic to a web site

 How can you tell the difference between being a target

and being really popular?

25

Cryptography as a Security Tool

• Broadest security tool available

▪ Internal to a given computer, source and destination

of messages can be known and protected

OS creates, manages, protects process IDs,

communication ports

▪ Source and destination of messages on network

cannot be trusted without cryptography

Local network – IP address?

– Consider unauthorized host added

WAN / Internet – how to establish authenticity

– Not via IP address

• Allows secure communications over an intrinsically

insecure medium

26

What is network security?

• confidentiality: only sender, intended receiver should

“understand” message contents

▪ sender encrypts message

▪ receiver decrypts message

• authentication: sender, receiver want to confirm identity

of each other

• message integrity: sender, receiver want to ensure

message not altered (in transit, or afterwards) without

detection

27

Friends and enemies: Alice, Bob, Trudy

• Well-known in network security world

• Bob, Alice (lovers!) want to communicate “securely”

• Trudy (intruder) may intercept, delete, add messages

secure

sender
secure

receiver

channel data, control

messages

data data

Alice Bob

Trudy

28

Who might Bob, Alice be?

• … well, real-life Bobs and Alices!

• Web browser/server for electronic transactions (e.g.,
on-line purchases)

• on-line banking client/server

• DNS servers

• routers exchanging routing table updates

• ...

29

Insecure communication medium

• Packet sniffing:

▪ broadcast media

▪ promiscuous NIC reads all packets passing by

▪ can read all unencrypted data (e.g. passwords)

▪ e.g.: C sniffs B’s packets

30

Insecure communication medium

• IP Spoofing

▪ can generate “raw” IP packets directly from application, putting any

value into IP source address field

▪ receiver can’t tell if source is spoofed

▪ e.g.: C pretends to be B

31
Network Security

The language of cryptography

m plaintext message

KA(m) ciphertext, encrypted with key KA

m = KB(KA(m))

plaintext plaintextciphertext

K
A

encryption

algorithm
decryption

algorithm

Alice’s

encryption

key

Bob’s

decryption

key
K

B

32

Types of Cryptography

• Crypto often uses keys:

▪ Algorithm is known to everyone

▪ Only “keys” are secret

• Symmetric key cryptography

▪ Involves the use of one key

• Public key cryptography

▪ Involves the use of two keys

• Hash functions

▪ Involves the use of no keys

▪ Nothing secret: How can this be useful?

33
Network Security

Symmetric key cryptography

symmetric key crypto: Bob and Alice share same
(symmetric) key: K

▪ e.g., key is knowing substitution pattern in mono
alphabetic substitution cipher

Q: how do Bob and Alice agree on key value?

plaintextciphertext

K
S

encryption

algorithm
decryption

algorithm

S

K
S

plaintext

message, m
K (m)

S
m = KS(KS(m))

34

Simple encryption scheme

substitution cipher: substituting one thing for another

• monoalphabetic cipher: substitute one letter for another

plaintext: abcdefghijklmnopqrstuvwxyz

ciphertext: mnbvcxzasdfghjklpoiuytrewq

Plaintext: bob. i love you. alice

ciphertext: nkn. s gktc wky. mgsbc

e.g.:

Encryption key: mapping from set of 26 letters to

set of 26 letters

35

A more sophisticated encryption approach

• n substitution ciphers, M1,M2,…,Mn

• cycling pattern:

▪ e.g., n=4: M1,M3,M4,M3,M2; M1,M3,M4,M3,M2; ..

• for each new plaintext symbol, use subsequent substitution pattern

in cyclic pattern

▪ dog: d from M1, o from M3, g from M4

Encryption key: n substitution ciphers, and

cyclic pattern

36

Breaking an encryption scheme

• cipher-text only attack:

Trudy has ciphertext she

can analyze

• two approaches:

▪ brute force: search

through all keys

▪ statistical analysis

• known-plaintext attack:

Trudy has plaintext

corresponding to

ciphertext

▪ e.g., in monoalphabetic

cipher, Trudy

determines pairings for

a,l,i,c,e,b,o,

• chosen-plaintext attack:

Trudy can get ciphertext

for chosen plaintext

37

Symmetric key crypto: DES

DES: Data Encryption Standard

• US encryption standard [NIST 1993]

• 56-bit symmetric key, 64-bit plaintext input

• block cipher with cipher block chaining

• how secure is DES?

▪ DES Challenge: 56-bit-key-encrypted phrase decrypted (brute force) in

less than a day

▪ no known good analytic attack

• making DES more secure:

▪ 3DES: encrypt 3 times with 3 different keys

38

Symmetric key
crypto: DES

initial permutation

16 identical “rounds” of

function application,

each using different 48

bits of key

final permutation

DES operation

39

AES: Advanced Encryption Standard

• symmetric-key NIST standard, replaced DES (Nov 2001)

• processes data in 128 bit blocks

• 128, 192, or 256 bit keys

• brute force decryption (try each key) taking 1 sec on

DES, takes 149 trillion years for AES

40

Key question

• How do two entities establish shared secret key over

network?

• Solutions:

▪ Direct exchange (in person)

▪ Key Distribution Center (KDC)

Trusted entity acting as intermediary between

entities

▪ Using public key cryptography

41

Key Distribution Center (KDC)

• Alice,Bob need

shared symmetric

key.

• KDC: server shares

different secret key

with each registered

user.

• Alice, Bob know own

symmetric keys, KA-

KDC KB-KDC , for

communicating with

KDC.

• Alice communicates with KDC,

gets session key R1, and KB-

KDC(A,R1)

• Alice sends Bob KB-KDC(A,R1),

Bob extracts R1

• Alice, Bob now share the

symmetric key R1.

42

Public Key Cryptography

symmetric key crypto

• requires sender, receiver

know shared secret key

• Q: how to agree on key in

first place (particularly if

never “met”)?

public key crypto

❖ radically different approach

[Diffie-Hellman76, RSA78]

❖ sender, receiver do not

share secret key

❖ public encryption key

known to all

❖ private decryption key

known only to receiver

43

Public key cryptography

plaintext

message, m

ciphertextencryption

algorithm
decryption

algorithm

Bob’s public

key

plaintext

messageK (m)
B

+

K
B

+

Bob’s private

key
K

B

-

m = K (K (m))
B

+

B

-

44

Public key encryption algorithms

need K () and K () such that
B B
. .

given public key K , it should be

impossible to compute private

key K
B

B

requirements:

1

2

RSA: Rivest, Shamir, Adleman algorithm

+ -

K (K (m)) = m
BB

- +

+

-

45

Prerequisite: modular arithmetic

• x mod n = remainder of x when divide by n

• facts:

[(a mod n) + (b mod n)] mod n = (a+b) mod n

[(a mod n) - (b mod n)] mod n = (a-b) mod n

[(a mod n) * (b mod n)] mod n = (a*b) mod n

• thus

(a mod n)d mod n = ad mod n

• example: x=14, n=10, d=2:
(x mod n)d mod n = 42 mod 10 = 6
xd = 142 = 196 xd mod 10 = 6

46

RSA: getting ready

• message: just a bit pattern

• bit pattern can be uniquely represented by an integer

number

• thus, encrypting a message is equivalent to encrypting a

number.

example:

• m= 10010001 . This message is uniquely represented by

the decimal number 145.

• to encrypt m, we encrypt the corresponding number,

which gives a new number (the ciphertext).

47

RSA: Creating public/private key pair

1. choose two large prime numbers p, q.

(e.g., 1024 bits each)

2. compute n = pq, z = (p-1)(q-1)

3. choose e (with e<n) that has no common factors

with z (e, z are “relatively prime”)

4. choose d such that ed-1 is exactly divisible by z.

(in other words: ed mod z = 1)

5. public key is (n,e), private key is (n,d)

K
B

+
K

B

-

48

RSA: encryption, decryption

Given (n,e) and (n,d) as computed above

1. to encrypt message m (<n), compute

c = m mod ne

2. to decrypt received bit pattern, c, compute

m = c mod nd

m = (m mod n)e mod n
dmagic

happens!
c

49

RSA example:

Bob chooses p=5, q=7. Then n=35, z=24.

e=5 (so e, z relatively prime).

d=29 (so ed-1 exactly divisible by z).

bit pattern m m
e

c = m mod ne

0000l000 12 24832 17
encrypt:

encrypting 8-bit messages.

c m = c mod nd

17 481968572106750915091411825223071697 12

c
d

decrypt:

50

Why does RSA work?

• must show that cd mod n = m

where c = me mod n

• fact: for any x and y: xy mod n = x(y mod z) mod n

▪ where n= pq and z = (p-1)(q-1)

• thus,

cd mod n = (me mod n)d mod n

= med mod n

= m(ed mod z) mod n

= m1 mod n

= m

51

RSA: another important property

The following property will be very useful later:

K (K (m)) = m
BB

- +
K (K (m))

BB

+ -
=

use public key

first, followed by

private key

use private key

first, followed by

public key

result is the same!

52

follows directly from modular arithmetic:

(me mod n)d mod n = med mod n

= mde mod n

= (md mod n)e mod n

K (K (m)) = m
BB

- +
K (K (m))

BB

+ -
=Why ?

53

Why is RSA secure?

• suppose you know Bob’s public key (n,e). How hard

is it to determine d?

• essentially need to find factors of n without knowing

the two factors p and q

▪ fact: factoring a big number is hard

54

RSA in practice: session keys

• exponentiation in RSA is computationally intensive

• DES is at least 100 times faster than RSA

• use public key cryto to establish secure connection,

then establish second key – symmetric session key –

for encrypting data

session key, KS

• Bob and Alice use RSA to exchange a symmetric key

KS

• once both have KS, they use symmetric key

cryptography

55

Authentication

Goal: Bob wants Alice to “prove” her identity to him

Protocol ap1.0: Alice says “I am Alice”

Failure scenario??

“I am Alice”

56

in a network,

Bob can not “see” Alice,

so Trudy simply declares

herself to be Alice“I am Alice”

Authentication

Goal: Bob wants Alice to “prove” her identity to him

Protocol ap1.0: Alice says “I am Alice”

57

Authentication: another try

Protocol ap2.0: Alice says “I am Alice” in an IP packet

containing her source IP address

Failure scenario??

“I am Alice”
Alice’s

IP address

58

Trudy can create

a packet

“spoofing”
Alice’s address“I am Alice”

Alice’s

IP address

Authentication: another try

Protocol ap2.0: Alice says “I am Alice” in an IP packet

containing her source IP address

59

Protocol ap3.0: Alice says “I am Alice” and sends her

secret password to “prove” it.

Failure scenario??

“I’m Alice”Alice’s

IP addr

Alice’s

password

OKAlice’s

IP addr

Authentication: another try

60

playback attack: Trudy

records Alice’s packet

and later

plays it back to Bob

“I’m Alice”Alice’s

IP addr

Alice’s

password

OKAlice’s

IP addr

“I’m Alice”Alice’s

IP addr

Alice’s

password

Protocol ap3.0: Alice says “I am Alice” and sends her

secret password to “prove” it.

Authentication: another try

61

Authentication: yet another try

Protocol ap3.1: Alice says “I am Alice” and sends her

encrypted secret password to “prove” it.

Failure scenario??

“I’m Alice”Alice’s

IP addr

encrypted

password

OKAlice’s

IP addr

62

record

and

playback

still works!

“I’m Alice”Alice’s

IP addr

encrypted

password

OKAlice’s

IP addr

“I’m Alice”Alice’s

IP addr

encrypted

password

Authentication: yet another try

Protocol ap3.1: Alice says “I am Alice” and sends her

encrypted secret password to “prove” it.

63

Goal: avoid playback attack

Failures, drawbacks?

nonce: number (R) used only once-in-a-lifetime

ap4.0: to prove Alice “live”, Bob sends Alice nonce, R. Alice

must return R, encrypted with shared secret key

“I am Alice”

R

K (R)
A-B

Alice is live, and

only Alice knows

key to encrypt

nonce, so it must

be Alice!

Authentication: yet another try

64

Authentication: ap5.0

ap4.0 requires shared symmetric key

• can we authenticate using public key techniques?

ap5.0: use nonce, public key cryptography

“I am Alice”

R
Bob computes

K (R)A

-

“send me your public key”

K
A

+

(K (R)) = R
A

-
K A

+

and knows only Alice

could have the private

key, that encrypted R

such that

(K (R)) = R
A

-
K

A
+

65

ap5.0: security hole

man (or woman) in the middle attack: Trudy poses as

Alice (to Bob) and as Bob (to Alice)

I am Alice I am Alice

R

T
K (R)

-

Send me your public key

T
K

+
A

K (R)
-

Send me your public key

A
K

+

T
K (m)
+

T
m = K (K (m))

+

T

-
Trudy gets

sends m to Alice

encrypted with

Alice’s public key

A
K (m)
+

A
m = K (K (m))

+

A

-

R

66

difficult to detect:

❖ Bob receives everything that Alice sends, and vice versa. (e.g.,

so Bob, Alice can meet one week later and recall

conversation!)

❖ problem is that Trudy receives all messages as well!

ap5.0: security hole

man (or woman) in the middle attack: Trudy poses as

Alice (to Bob) and as Bob (to Alice)

67

Message integrity

• Allows communicating parties to verify that received

messages are authentic.

▪ Source of message is who/what you think it is

▪ Content of message has not been altered

▪ Message has not been replayed

▪ Sequence of messages is maintained

• Let’s first talk about message digests

68

Hash function algorithms

• MD5 hash function widely used (RFC 1321)

▪ computes 128-bit message digest in 4-step process.

▪ arbitrary 128-bit string x, appears difficult to construct msg m

whose MD5 hash is equal to x

• SHA-1 is also used

▪ US standard [NIST, FIPS PUB 180-1]

▪ 160-bit message digest

69

Message Authentication Code (MAC)

• Authenticates sender

• Verifies message integrity

• Sender:

▪ calculates MAC: H(m||s) ;

▪ send [m|| H(m||s)]

• No encryption ! Also called “keyed hash”

70

HMAC [RFC 2104]

• Popular MAC standard

• Can use both MD5 and SHA-1

1. Concatenates secret to front of message: [s||m]

2. Hashes concatenated message: H([s||m])

3. Concatenates the to front of message: [H([s||m])||m]

4. Hashes the combination again: H([H([s||m])||m])

71

Digital signatures

Cryptographic technique analogous to hand-written

signatures.

• The sender (Bob) digitally signs document, establishing he is

the document owner/creator.

• Verifiable

▪ The recipient (Alice) can verify and prove that Bob, and no one

else, signed the document.

• Non-forgeable

▪ The sender (Bob) can prove that someone else has signed a

message

• Non-repudiation

▪ The recipient (Alice) can prove that Bob signed m and not m’

• Message integrity

▪ The sender (Bob) can prove that he signed m and not m’

72

Digital signature

Could we use Message Authentication Code as a Digital Signature??

• Goal is similar to that of a MAC

▪ MAC guarantees message integrity

• MAC does not guarantee

▪ Verifiability

▪ Non forgeability

▪ Non repudiation

• Solution: use public key cryptography

73

simple digital signature for message m:

• Bob signs m by encrypting with his private key KB, creating

“signed” message, KB(m)-
-

Dear Alice

Oh, how I have missed

you. I think of you all the

time! …(blah blah blah)

Bob

Bob’s message, m

Public key

encryption

algorithm

Bob’s private

key
K

B

-

Bob’s message,

m, signed

(encrypted) with

his private key

m,K
B

-
(m)

Digital signatures

74

-

-

Digital signatures

• suppose Alice receives msg m, with signature: m, KB(m)

• Alice verifies m signed by Bob by applying Bob’s public

key KB to KB(m) then checks KB(KB(m)) = m.

• If KB(KB(m)) = m, whoever signed m must have used

Bob’s private key.

-

--

+

+ +

75

Alice thus verifies that:

✓ Bob signed m

✓ no one else signed m

✓ Bob signed m and not m’

Non-repudiation:

✓Alice can take m, and signature KB(m) to court
and prove that Bob signed m

Message integrity:

✓Bob can prove that he signed m and not m’ .

-

Digital signatures

76

Message digests

computationally expensive to

public-key-encrypt long

messages

goal: fixed-length, easy- to-

compute digital “fingerprint”

• apply hash function H to m,

get fixed size message

digest, H(m).

Hash function properties:

• many-to-1

• produces fixed-size msg digest

(fingerprint)

• given message digest x,

computationally infeasible to

find m such that x = H(m)

large

message

m

H: Hash

Function

H(m)

77

Internet checksum: poor crypto hash function

Internet checksum has some properties of hash function:

• produces fixed length digest (16-bit sum) of message

• is many-to-one

But given message with given hash value, it is easy to find another

message with same hash value:

I O U 1

0 0 . 9

9 B O B

49 4F 55 31

30 30 2E 39

39 42 D2 42

message ASCII format

B2 C1 D2 AC

I O U 9

0 0 . 1

9 B O B

49 4F 55 39

30 30 2E 31

39 42 D2 42

message ASCII format

B2 C1 D2 ACdifferent messages

but identical checksums!

78

large
message

m

H: Hash

function H(m)

digital

signature

(encrypt)

Bob’s

private

key K
B

-

+

Bob sends digitally signed

message:
Alice verifies signature, integrity of

digitally signed message:

KB(H(m))
-

encrypted

msg digest

KB(H(m))
-

encrypted

msg digest

large
message

m

H: Hash

function

H(m)

digital

signature

(decrypt)

H(m)

Bob’s

public

key K
B

+

equal

?

Digital signature = signed message digest

79

Authentication Code vs. Digital Signature

• MAC: m+s ➔ H(m+s) ➔ [m, H(m+s)]

• DS: m ➔ H(m) ➔ K-(H(m)) ➔ [m, K-(H(m))]

• Digital signature is a heavier technique

▪ Requires a Public Key Infrastructure (PKI)

• In practice

▪ MAC used in OSPF for message integrity

▪ MAC also used for transport and network layer solutions

▪ DS used in PGP for message integrity and non repudiation

80

Recall: ap5.0 security hole

man (or woman) in the middle attack: Trudy poses as Alice (to

Bob) and as Bob (to Alice)

I am Alice I am Alice

R

T
K (R)

-

Send me your public key

T
K

+
A

K (R)
-

Send me your public key

A
K

+

T
K (m)
+

T
m = K (K (m))

+

T

-
Trudy gets

sends m to Alice

encrypted with

Alice’s public key

A
K (m)
+

A
m = K (K (m))

+

A

-

R

81

Key question

• How can Alice achieve Bob’s public key?

▪ E-mail?

▪ Website?

▪ ??

82

Public-key certification

• motivation: Trudy plays pizza prank on Bob

▪ Trudy creates e-mail order:

Dear Pizza Store, Please deliver to me four pepperoni

pizzas. Thank you, Bob

▪ Trudy signs order with her private key

▪ Trudy sends order to Pizza Store

▪ Trudy sends to Pizza Store her public key, but says it’s

Bob’s public key

▪ Pizza Store verifies signature; then delivers four pepperoni

pizzas to Bob

▪ Bob doesn’t even like pepperoni

83

Certification authorities

certification authority (CA): binds public key to particular entity, E.

• E (person, router) registers its public key with CA.

▪ E provides “proof of identity” to CA.

▪ CA creates certificate binding E to its public key.

▪ certificate containing E’s public key digitally signed by CA – CA says

“this is E’s public key”

Bob’s

public

key K
B

+

Bob’s

identifying

information

digital

signature

(encrypt)

CA

private

key
K CA

-

K
B

+

certificate for

Bob’s public key,

signed by CA

84

• when Alice wants Bob’s public key:

▪ gets Bob’s certificate (Bob or elsewhere).

▪ apply CA’s public key to Bob’s certificate, get Bob’s public key

Bob’s

public

key K
B

+

digital

signature

(decrypt)

CA

public

key
K CA

+

K
B

+

Certification authorities

85

Certificates

• Primary standard ITU X.509 (RFC 2459)

• Certificate includes:

▪ Issuer name

▪ Entity name, address, domain name, etc.

▪ Entity’s public key

▪ Digital signature (signed with issuer’s private key)

• Public-Key Infrastructure (PKI)

▪ Certificates and certification authorities

▪ Often considered “heavy”

86

Secure e-mail

• Requirements

▪ Confidentiality

▪ Sender Authentication

▪ Message Integrity

87

Secure e-mail

Alice:

❖ generates random symmetric private key, KS

❖ encrypts message with KS (for efficiency)

❖ also encrypts KS with Bob’s public key

❖ sends both KS(m) and KB(KS) to Bob

❖ Alice wants to send confidential e-mail, m, to Bob.

KS().

KB().+

+ -

KS(m)

KB(KS)
+

m

KS

KS

KB
+

Internet

KS().

KB().-

KB
-

KS

m
KS(m)

KB(KS)
+

88

Secure e-mail

Bob:

❖ uses his private key to decrypt and recover KS

❖ uses KS to decrypt KS(m) to recover m

❖ Alice wants to send confidential e-mail, m, to Bob.

KS().

KB().+

+ -

KS(m)

KB(KS)
+

m

KS

KS

KB
+

Internet

KS().

KB().-

KB
-

KS

m
KS(m)

KB(KS)
+

89

Secure e-mail (continued)

❖ Alice wants to provide sender authentication message integrity

❖ Alice digitally signs message

❖ sends both message (in the clear) and digital signature

H(). KA().-

+ -

H(m)KA(H(m))
-

m

KA
-

Internet

m

KA().+

KA
+

KA(H(m))
-

m
H().

H(m)

compare

90

Secure e-mail (continued)

❖ Alice wants to provide secrecy, sender authentication,

message integrity.

Alice uses three keys: her private key, Bob’s public key, newly

created symmetric key

H(). KA().-

+

KA(H(m))
-

m

KA

-

m

KS().

KB().+

+

KB(KS)
+

KS

KB
+

Internet

KS

91

Pretty good privacy (PGP)

• Internet e-mail encryption

scheme, a de-facto standard.

• Uses symmetric key

cryptography, public key

cryptography, hash function,

and digital signature as

described.

• Provides secrecy, sender

authentication, integrity.

• Inventor, Phil Zimmerman, was

target of 3-year federal

investigation.

A PGP signed message:

92

SSL: Secure Sockets Layer
• PGP provides security for a

specific network application

• SSL works at transport layer.

Provides security to any TCP-

based application using SSL

services.

• widely deployed security protocol

▪ supported by almost all browsers,

web servers

▪ https

▪ billions $/year over SSL

• mechanisms: [Woo 1994],

implementation: Netscape

• provides

▪ confidentiality

▪ integrity

▪ authentication

• original goals:

▪ Web e-commerce

transactions

▪ encryption (especially credit-

card numbers)

▪ Web-server authentication

▪ optional client authentication

▪ minimum hassle in doing

business with new merchant

• available to all TCP applications

▪ secure socket interface

93

SSL and TCP/IP

Application

TCP

IP

normal application

Application

SSL

TCP

IP

application with SSL

• SSL provides application programming interface

(API) to applications

• C and Java SSL libraries/classes readily available

94

SSL Encrypted Session

• Server authentication

▪ The server is verified through a certificate assuring that the client is

talking to correct server

• Key exchange

▪ Asymmetric cryptography used to establish a secure session

key (symmetric encryption) for communication

▪ Browser

 generates a symmetric session key Ks

 encrypts it with server’s public key

 sends encrypted key to server.

• Server

▪ Using its private key, the server decrypts the session key Ks

• Secure communication

▪ All data sent into TCP socket (by client or server) are encrypted with

session key Ks

95

Implementing Security Defenses

• Defense in depth is most common security theory – multiple layers of security

• Security policy describes what is being secured

• Vulnerability assessment compares real state of system / network compared to

security policy

• Intrusion detection endeavors to detect attempted or successful intrusions

▪ Signature-based detection spots known bad patterns

▪ Anomaly detection spots differences from normal behavior

 Can detect zero-day attacks

▪ False-positives and false-negatives a problem

• Virus protection

▪ Searching all programs or programs at execution for known virus patterns

▪ Or run in sandbox so can’t damage system

• Auditing, accounting, and logging of all or specific system or network activities

• Practice safe computing – avoid sources of infection, download from only

“good” sites, etc

96

User Authentication

• Crucial to identify user correctly, as protection systems depend on user ID

• User identity most often established through passwords, can be considered
a special case of either keys or capabilities

• Passwords must be kept secret

▪ Frequent change of passwords

▪ History to avoid repeats

▪ Use of “non-guessable” passwords

▪ Log all invalid access attempts (but not the passwords themselves)

▪ Unauthorized transfer

• Passwords may also either be encrypted or allowed to be used only once

▪ Does encrypting passwords solve the exposure problem?

 Might solve sniffing

 Consider shoulder surfing

 Consider Trojan horse keystroke logger

 How are passwords stored at authenticating site?

97

Passwords

• Encrypt to avoid having to keep secret

▪ But keep secret anyway (i.e. Unix uses superuser-only readably file
/etc/shadow)

▪ Use algorithm easy to compute but difficult to invert

▪ Only encrypted password stored, never decrypted

▪ Add “salt” to avoid the same password being encrypted to the same value

• One-time passwords

▪ Use a function based on a seed to compute a password, both user and

computer

▪ Hardware device / calculator / key fob to generate the password

 Changes very frequently

• Biometrics

▪ Some physical attribute (fingerprint, hand scan)

• Multi-factor authentication

▪ Need two or more factors for authentication

 i.e. USB “dongle”, biometric measure, and password

98

Traditional Defense Principle

99
Network Security

Firewalls

isolates organization’s internal net from larger Internet,

allowing some packets to pass, blocking others

firewall

administered

network

public

Internet

firewall
trusted “good guys” untrusted “bad guys”

100

Firewalls: why

• Prevent denial of service attacks:

▪ SYN flooding: attacker establishes many bogus TCP connections, no

resources left for “real” connections

• Prevent illegal modification/access of internal data

▪ e.g., attacker replaces CIA’s homepage with something else

• Allow only authorized access to inside network

▪ set of authenticated users/hosts

• Three types of firewalls:

▪ stateless packet filters

▪ stateful packet filters

▪ application gateways

101

Network Security Through Domain Separation Via Firewall

102

Stateless packet filtering

• internal network connected to Internet via router firewall

• router filters packet-by-packet, decision to forward/drop
packet based on:

▪ source IP address, destination IP address

▪ TCP/UDP source and destination port numbers

▪ ICMP message type

▪ TCP SYN and ACK bits

Should arriving

packet be allowed in?

Departing packet let

out?

103

Policy Firewall Setting

No outside Web access. Drop all outgoing packets to any IP

address, port 80

No incoming TCP connections,

except those for institution’s

public Web server only.

Drop all incoming TCP SYN packets

to any IP except 130.207.244.203,

port 80

Prevent Web-radios from eating

up the available bandwidth.

Drop all incoming UDP packets -

except DNS and router broadcasts.

Prevent your network from being

used for a smurf DoS attack.

Drop all ICMP packets going to a

“broadcast” address (e.g.

130.207.255.255).

Prevent your network from being

tracerouted

Drop all outgoing ICMP TTL expired

traffic

Stateless packet filtering: more examples

104

action
source

address

dest

address
protocol

source

port

dest

port

flag

bit

allow 222.22/16
outside of

222.22/16
TCP > 1023 80

any

allow outside of

222.22/16

222.22/16
TCP 80 > 1023 ACK

allow 222.22/16
outside of

222.22/16
UDP > 1023 53 ---

allow outside of

222.22/16

222.22/16
UDP 53 > 1023 ----

deny all all all all all all

Access Control Lists

❖ ACL: table of rules, applied top to bottom to incoming packets:

(action, condition) pairs

105

Stateful packet filtering

• stateless packet filter: heavy handed tool

▪ admits packets that “make no sense,” e.g., dest port = 80,

ACK bit set, even though no TCP connection established:

action
source

address

dest

address
protocol

source

port

dest

port

flag

bit

allow outside of

222.22/16

222.22/16
TCP 80 > 1023 ACK

• stateful packet filter: track status of every TCP connection

▪ track connection setup (SYN), teardown (FIN): determine

whether incoming, outgoing packets “makes sense”

▪ timeout inactive connections at firewall: no longer admit packets

106

action
source

address

dest

address
proto

source

port

dest

port

flag

bit

check

conxion

allow 222.22/16
outside of

222.22/16
TCP > 1023 80

any

allow outside of

222.22/16

222.22/16
TCP 80 > 1023 ACK

x

allow 222.22/16
outside of

222.22/16
UDP > 1023 53 ---

allow outside of

222.22/16

222.22/16
UDP 53 > 1023 ----

x

deny all all all all all all

Stateful packet filtering

• ACL augmented to indicate need to check connection state

table before admitting packet

107

Application gateways

• filter packets on application

data as well as on

IP/TCP/UDP fields.

• example: allow select internal

users to telnet outside

1. require all telnet users to telnet through gateway.

2. for authorized users, gateway sets up telnet connection to dest

host. Gateway relays data between 2 connections

3. router filter blocks all telnet connections not originating from

gateway.

application

gateway

host-to-gateway

telnet session

router and filter

gateway-to-remote

host telnet session

108

Limitations of firewalls, gateways

• Can be tunneled or spoofed

• Tunneling allows disallowed
protocol to travel within
allowed protocol (i.e., telnet
inside of HTTP)

• Firewall rules typically based
on host name or IP address
which can be spoofed

• if multiple app’s. need

special treatment, each has

own app. gateway

• client software must know

how to contact gateway.

▪ e.g., must set IP address

of proxy in Web browser

• Filters often use all or

nothing policy for UDP

• Tradeoff: degree of

communication with outside

world, level of security

• Many highly protected sites

still suffer from attacks

109

Intrusion detection systems

• packet filtering:

▪ operates on TCP/IP headers only

▪ no correlation check among sessions

• IDS: intrusion detection system

▪ deep packet inspection: look at packet contents

(e.g., check character strings in packet against

database of known virus, attack strings)

▪ examine correlation among multiple packets

port scanning

network mapping

DoS attack

110

Web
server FTP

server

DNS
server

Internet

demilitarized

zone

firewall

IDS

sensors

Intrusion detection systems

• multiple IDSs: different types of checking at different

locations

internal

network

