
Message Passing

Model

Alessio Vecchio
alessio.vecchio@unipi.it

Dip. di Ingegneria dell’Informazione
Università di Pisa

Based on original slides by Silberschatz, Galvin, and Gagne
Operating System Concepts

mailto:alessio.vecchio@unipi.it

2

Inter-Process Communication (IPC) – Message Passing

• Processes communicate with each other without
resorting to shared variables

• IPC facility provides two operations:

▪ send(message)

▪ receive(message)

• The message size is either fixed or variable

3

Message Passing (Cont.)

• If processes P and Q wish to communicate, they need to:

▪ Establish a communication link between them

▪ Exchange messages via send/receive

▪ The communication link is provided by the OS

• Implementation issues:

▪ How are links established?

▪ Can a link be associated with more than two processes?

▪ How many links can there be between every pair of

communicating processes?

▪ What is the capacity of a link?

▪ Is the size of a message that the link can accommodate

fixed or variable?

▪ Is a link unidirectional or bi-directional?

4

Implementation Issues

Physical implementation

• Single-processor system

▪ Shared memory

• Multi-processor systems

▪ Hardware bus

• Distributed systems

▪ Networking System + Communication networks

5

Communications Models

(a) Shared memory. (b) Message passing.

6

Implementation Issues

Logical properties

• Direct or indirect

• Synchronous or asynchronous

• Automatic or explicit buffering

7

Direct Communication

• Processes must name each other explicitly:

▪ send (P, message) – send a message to process P

▪ receive(Q, message) – receive a message from process Q

• Properties of communication link

▪ Links are established automatically

▪ A link is associated with exactly one pair of communicating

processes

▪ Between each pair there exists exactly one link

▪ The link may be unidirectional, but is usually bi-directional

8

Direct Addressing

• Processes must name each other explicitly

• Symmetric scheme

▪ send (D, message) – send a message to process D

▪ receive(S, message) – receive a message from process S

• Logical properties

▪ Links are established automatically

▪ A link is associated with exactly one pair of communicating processes

▪ Between each pair there exists exactly one link

9

Direct Addressing

• Asymmetric scheme

▪ send (D, message) – send a message to process D

▪ receive(proc, message) - receive a message from any process proc

10

Indirect Addressing

• Messages are sent/received through mailboxes

▪ shared data structures where messages are queued temporarily.

Sometimes referred to as ports

• Processes can communicate only if they share a mailbox

▪ Each mailbox has a unique id

• Primitives are defined as:

▪ send(mb, message) – send a message to mailbox mb

▪ receive(mb, message) – receive a message from mailbox mb

11

Indirect Communication

• Operations

▪ create a new mailbox

▪ send and receive messages through mailbox

▪ destroy a mailbox

• Properties of communication link

▪ Link established only if processes share a common mailbox

▪ A link may be associated with many processes

▪ Each pair of processes may share several communication links

▪ Link may be unidirectional or bi-directional

• Relationships

▪ One-to-one (private communication)

▪ Many–to-one (client-server communication)

▪ Many-to-many (multicast communication)

12

Synchronization

• Blocking is considered synchronous

▪ Blocking send -- the sender is blocked until the message is

received

▪ Blocking receive -- the receiver is blocked until a message is

available

• Non-blocking is considered asynchronous

▪ Non-blocking send -- the sender sends the message and

continue

▪ Non-blocking receive -- the receiver receives:

 A valid message, or

 Null message

Message passing may be either blocking or non-blocking

13

Synchronization

• Blocking send, blocking receive

▪ Rendez-vous between sender and receiver

• Non-blocking send, blocking receive

▪ Most useful combination (used by servers)

▪ Variations: receive with timeout, select, proactive test

• Non-blocking send, Non-blocking receive

▪ Neither party is required to wait

14

Buffering

• Queue of messages attached to the link

• Implemented in one of three ways.

▪ Zero capacity – 0 messages

Sender must wait for receiver (in fact, this introduces a rendezvous).

▪ Bounded capacity – finite length of n messages

Sender must wait if the link full.

▪ Unbounded capacity – infinite length

Sender never waits.

15

Process Producer {

while (true) {

// message in nextProduced

send(mb, nextProduced);

}

}

Process Consumer {

while (true) {

receive(mb, msg);

// consume message

}

}

Mailbox mb;

Producer-Consumer: Solution (1)

16

Process Producer {

while (true) {

// message in nextProduced

receive(mb2, ack);

send(mb1, nextProduced);

}

}

Process Consumer {

while (true) {

send(mb2, READY);

receive(mb1, msg);

// consume message

}

}

Mailbox mb1, mb2;

Producer-Consumer: Solution (2)

17

Client-Server Communication

ServerClient

Request

Response

