
Shared Memory

Model

Alessio Vecchio
alessio.vecchio@unipi.it

Dip. di Ingegneria dell’Informazione
Università di Pisa

Based on original slides by Silberschatz, Galvin, and Gagne
Operating System Concepts

mailto:alessio.vecchio@unipi.it

2

Overview

• The Critical-Section Problem

• Software Solutions

• Synchronization Hardware

• Semaphores

• Monitors

• Synchronization Examples

3

Overview

• The Critical-Section Problem

• Software Solutions

• Synchronization Hardware

• Semaphores

• Monitors

• Synchronization Examples

4

Producer-Consumer Problem

• The Producer process produces data that must processed by the

Consumer process

• The inter-process communication occurs through a shared buffer

(shared memory)

• Bounded Buffer Size

▪ The Producer process cannot insert a new item if the buffer is full

▪ The Consumer process cannot extract an item if the buffer is

empty

5

Producer-Consumer Problem

• Shared data

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

int counter = 0;

6

Producer-Consumer Problem

• Producer process

item nextProduced;

while (1) {

while (counter == BUFFER_SIZE); /* do nothing */

buffer[in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}

7

Producer-Consumer Problem

• Consumer process

item nextConsumed;

while (1) {

while (counter == 0); /* do nothing */

nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

counter--;

}

8

Producer-Consumer Problem

• The statements

counter++;

counter--;

must be performed atomically.

• Atomic operation means an operation that completes in its entirety

without interruption.

9

Producer-Consumer Problem

• The statement “counter++” may be implemented in machine

language as:

register1 = counter

register1 = register1 + 1

counter = register1

• The statement “counter- -” may be implemented as:

register2 = counter

register2 = register2 – 1

counter = register2

10

Producer-Consumer Problem

• If both the producer and consumer attempt to update the buffer

concurrently, the assembly language statements may get

interleaved.

• Interleaving depends upon how the producer and consumer

processes are scheduled.

11

Race Condition

• Assume counter is initially 5. One interleaving of

statements is:

producer: register1 = counter (register1 = 5)

producer: register1 = register1 + 1 (register1 = 6)

consumer: register2 = counter (register2 = 5)

consumer: register2 = register2 – 1 (register2 = 4)

producer: counter = register1 (counter = 6)

consumer: counter = register2 (counter = 4)

• The value of count may be either 4 or 6, where the

correct result should be 5.

12

Race Condition

• Race condition

▪ The situation where several processes access and manipulate

shared data concurrently.

▪ The final value of the shared data depends upon how

instructions are interleaved.

• Show example about balance and num.Ops.

• To prevent race conditions, concurrent processes must be

synchronized.

13

Race Condition

• Processes P0 and P1 are creating child processes using the fork()

system call

• Race condition on kernel variable next_available_pid which

represents the next available process identifier (pid)

• Unless there is a mechanism to prevent P0 and P1 from accessing the
variable next_available_pid the same pid could be assigned to

two different processes!

14

Critical Section Problem

• Consider system of n processes {p0, p1, … pn-1}

• Each process has critical section segment of code

▪ Process may be changing common variables, updating

table, writing file, etc

▪ When one process in critical section, no other may be in its

critical section

• Critical section problem is to design protocol to solve this

• Each process must ask permission to enter critical section in

entry section, may follow critical section with exit section,

then remainder section

15

General Process Structure

• General structure of process Pi

do {

entry section

critical section

exit section

reminder section

} while (true)

16

Critical-Section Problem (Cont.)

1. Mutual Exclusion - If process Pi is executing in its critical section,

then no other processes can be executing in their critical sections

2. Progress - If no process is executing in its critical section and there

exist some processes that wish to enter their critical section, then the

selection of the process that will enter the critical section next cannot

be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times that

other processes are allowed to enter their critical sections after a

process has made a request to enter its critical section and before that

request is granted

▪ Assume that each process executes at a nonzero speed

▪ No assumption concerning relative speed of the n processes

Requirements for solution to critical-section problem

17

Possible Solutions

• Software approaches

• Hardware solutions

▪ Interrupt disabling

▪ Special machine instructions

• Operating System Support

▪ Semaphores

• Programming language Support

▪ Monitor

18

A Software Solution

boolean lock=false;

Process Pi {

do {

while (lock); // do nothing

lock=true;

critical section

lock=false;

remainder section

} while (true);

}

Does it work?

19

Software Solution 1

• Two process solution

• Assume that the load and store machine-language

instructions are atomic; that is, cannot be interrupted

• The two processes share one variable:

▪ int turn;

• The variable turn indicates whose turn it is to enter the

critical section

20

Algorithm for Process Pi

do {

turn = i;

while (turn == j);

/* critical section */

turn = j;

/* remainder section */

} while (true);

21

Correctness of the Software Solution 1

• Mutual exclusion is preserved

Pi enters critical section only if:

turn = i

and turn cannot be both 0 and 1 at the same time

• What about the Progress requirement?

• What about the Bounded-waiting requirement?

22

Peterson’s Solution

• Two process solution

• Assume that the load and store machine-language

instructions are atomic; that is, cannot be interrupted

• The two processes share two variables:

▪ int turn;

▪ boolean flag[2]

• The variable turn indicates whose turn it is to enter the

critical section

• The flag array is used to indicate if a process is ready to
enter the critical section.

▪ flag[i] = true implies that process Pi is ready!

23

Algorithm for Process Pi

do {

flag[i] = true;

turn = j;

while (flag[j] && turn = = j);

/* critical section */

flag[i] = false;

/* remainder section */

} while (true);

24

Correctness of Peterson’s Solution

• Provable that the three CS requirement are met:

1. Mutual exclusion is preserved

Pi enters CS only if:

either flag[j] = false or turn = i

2. Progress requirement is satisfied

3. Bounded-waiting requirement is met

25

Peterson’s Solution and Modern Architecture

• Although useful for demonstrating an algorithm, Peterson’s

Solution is not guaranteed to work on modern architectures.

▪ To improve performance, processors and/or compilers may

reorder operations that have no dependencies

• Understanding why it will not work is useful for better

understanding race conditions.

• For single-threaded this is ok as the result will always be the

same.

• For multithreaded the reordering may produce inconsistent or

unexpected results!

26

Modern Architecture Example

• Two threads share the data:
boolean flag = false;

int x = 0;

• Thread 1 performs
while (!flag)

;

print x

• Thread 2 performs
x = 100;

flag = true

• What is the expected output?

100

27

Modern Architecture Example (Cont.)

• However, since the variables flag and x are independent

of each other, the instructions:

flag = true;

x = 100;

for Thread 2 may be reordered

• If this occurs, the output may be 0!

28

Peterson’s Solution Revisited

• The effects of instruction reordering in Peterson’s Solution

• This allows both processes to be in their critical section at the same time!

• To ensure that Peterson’s solution will work correctly on modern computer

architecture we must use Memory Barrier.

29

Memory Barrier

• Memory model are the memory guarantees a computer

architecture makes to application programs.

• Memory models may be either:

▪ Strongly ordered – where a memory modification of one

processor is immediately visible to all other processors.

▪ Weakly ordered – where a memory modification of one

processor may not be immediately visible to all other

processors.

• A memory barrier is an instruction that forces any change in

memory to be propagated (made visible) to all other processors.

30

Memory Barrier Instructions

• When a memory barrier instruction is performed, the system

ensures that all loads and stores are completed before any

subsequent load or store operations are performed.

• Therefore, even if instructions were reordered, the memory

barrier ensures that the store operations are completed in

memory and visible to other processors before future load or

store operations are performed.

31

Memory Barrier Example

• Returning to previous example

• We could add a memory barrier to the following instructions

to ensure Thread 1 outputs 100:

• Thread 1 now performs
while (!flag)

memory_barrier();

print x

• Thread 2 now performs
x = 100;

memory_barrier();

flag = true

• For Thread 1 we are guaranteed that that the value of flag

is loaded before the value of x.

• For Thread 2 we ensure that the assignment to x occurs

before the assignment flag.

32

Solution to Critical-section Problem Using Locks

do {

acquire lock

critical section

release lock

remainder section

} while (true);

33

Overview

• The Critical-Section Problem

• Software Solutions

• Synchronization Hardware

• Semaphores

• Monitors

• Synchronization Examples

34

Interrupt Disabling

do {

disable interrupt;

critical section

enable interrupt;

remainder section

} while (true);

35

Previous Solution

do {

while (lock); // do nothing

lock=true;

critical section

lock=false;

remainder section

} while (true);

This solution does not guarantee the mutual exclusion

because the test and set on lock are not atomic

36

Synchronization Hardware

• Many systems provide hardware support for implementing the
critical section code.

• Uniprocessors – could disable interrupts

▪ Currently running code would execute without preemption

▪ Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable

• We will look at three forms of hardware support:

1. Hardware instructions

2. Atomic variables

37

Hardware Instructions

• Special hardware instructions that allow us to either

test-and-modify the content of a word, or two swap the

contents of two words atomically (uninterruptedly.)

▪ Test-and-Set instruction

▪ Compare-and-Swap instruction

38

The test_and_set Instruction

• Definition

boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = true;

return rv:

}

• Properties

▪ Executed atomically

▪ Returns the original value of passed parameter

▪ Set the new value of passed parameter to true

39

Solution Using test_and_set()

• Shared boolean variable lock, initialized to false

• Solution:

do {

while (test_and_set(&lock)) ; /* do nothing */

/* critical section */

lock = false;

/* remainder section */

} while (true);

• Does it solve the critical-section problem?

40

The compare_and_swap Instruction

• Definition

int compare_and_swap(int *value, int expected, int new_value)

{

int temp = *value;

if (*value == expected)

*value = new_value;

return temp;

}

• Properties

▪ Executed atomically

▪ Returns the original value of passed parameter value

▪ Set the variable value the value of the passed parameter

new_value but only if *value == expected is true. That is, the

swap takes place only under this condition.

41

Solution using compare_and_swap

• Shared integer lock initialized to 0;

• Solution:

while (true){

while (compare_and_swap(&lock, 0, 1) != 0)

; /* do nothing */

/* critical section */

lock = 0;

/* remainder section */

}

• Does it solve the critical-section problem?

42

Bounded-waiting with compare-and-swap

while (true) {

waiting[i] = true;

key = 1;

while (waiting[i] && key == 1)

key = compare_and_swap(&lock,0,1);

waiting[i] = false;

/* critical section */

j = (i + 1) % n;

while ((j != i) && !waiting[j])

j = (j + 1) % n;

if (j == i)

lock = 0;

else

waiting[j] = false;

/* remainder section */

}

43

Atomic Variables

• Typically, instructions such as compare-and-swap are used

as building blocks for other synchronization tools.

• One tool is an atomic variable that provides atomic

(uninterruptible) updates on basic data types such as

integers and booleans.

• For example:

▪ Let sequence be an atomic variable

▪ Let increment() be operation on the atomic variable

sequence

▪ The Command:

increment(&sequence);

ensures sequence is incremented without interruption:

44

Atomic Variables

• The increment() function can be implemented as follows:

void increment(atomic_int *v)

{

int temp;

do {

temp = *v;

}

while (temp != (compare_and_swap(v,temp,temp+1));

}

45

Mutex Locks

• Previous solutions are complicated and generally inaccessible to
application programmers

• OS designers build software tools to solve critical section problem

• Simplest is mutex lock

▪ Boolean variable indicating if lock is available or not

• Protect a critical section by

▪ First acquire() a lock

▪ Then release() the lock

• Calls to acquire() and release() must be atomic

▪ Usually implemented via hardware atomic instructions such as
compare-and-swap.

• But this solution requires busy waiting

▪ This lock therefore called a spinlock

46

Solution to CS Problem Using Mutex Locks

while (true) {

acquire lock

critical section

release lock

remainder section

}

47

Semaphore

• Synchronization tool that does not require busy waiting

• Semaphore S – integer variable

• Can only be accessed via two indivisible (atomic) operations

▪ wait() and signal()

▪ Originally called P() and V()

48

Semaphore

wait (S) {

while (S <= 0); // busy wait

S--;

}

signal (S) {

S++;

}

wait() and signal() must be atomic

49

Semaphore as Synchronization Tool

• Counting semaphore

▪ integer value can range over an unrestricted domain

• Binary semaphore

▪ integer value can range only between 0 and 1; can be simpler to

implement

▪ Also known as mutex locks

• Can implement a counting semaphore S as a binary semaphore

50

Semaphore as Mutex Tool

• Solution to the critical section problem

• Shared data:

semaphore mutex=1;

• Process Pi:

do {

wait (mutex);

/* critical section */

signal (mutex);

/* remainder section */

} while (true);

51

Semaphore Implementation

• Must guarantee that no two processes can execute the wait()

and signal() on the same semaphore at the same time

• Thus, the implementation becomes the critical section problem

where the wait and signal code are placed in the critical

section

• Could now have busy waiting in critical section implementation

▪ But implementation code is short

▪ Little busy waiting if critical section rarely occupied

• Note that applications may spend lots of time in critical sections

and therefore this is not a good solution

52

Semaphore Implementation with no Busy waiting

• With each semaphore there is an associated waiting queue

• Each entry in a waiting queue has two data items:

▪ Value (of type integer)

▪ Pointer to next record in the list

• Two operations:

▪ block – place the process invoking the operation on the

appropriate waiting queue

▪ wakeup – remove one of processes in the waiting queue

and place it in the ready queue

53

Implementation with no Busy waiting (Cont.)

• Waiting queue

typedef struct {

int value;

struct process *list;

} semaphore;

54

Implementation with no Busy waiting (Cont.)

wait(semaphore *S) {

S->value--;

if (S->value < 0) {

add this process to S->list;

block();

}

}

signal(semaphore *S) {

S->value++;

if (S->value <= 0) {

remove a process P from S->list;

wakeup(P);

}

}

55

Semaphore as a Synchronization Tool

• Execute B in Pj only after A executed in Pi

• Use semaphore flag initialized to 0

• Code:

Pi Pj

… …

A wait(flag)

signal(flag) B

56

Deadlock and Starvation

• Deadlock

two or more processes are waiting indefinitely for an event that can be

caused by only one of the waiting processes.

Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

… …

signal(S); signal(Q);

signal(Q); signal(S);

• Starvation – indefinite blocking.

A process may never be removed from the semaphore queue in which

it is suspended.

57

Classical Problems of Synchronization

• Bounded-Buffer Problem

• Readers and Writers Problem

• Dining-Philosophers Problem

58

Bounded-Buffer Problem

• N buffers, each can hold one item

• Semaphore mutex initialized to the value 1

• Semaphore full initialized to the value 0

• Semaphore empty initialized to the value N.

59

Bounded-Buffer Problem

Producer Process

do {

…

<produce an item in nextp>

…

wait(empty);

wait(mutex);

…

<add nextp to buffer>

…

signal(mutex);

signal(full);

} while (true);

Consumer Process

do {

wait(full)

wait(mutex);

…

<remove item from buffer to nextc>

…

signal(mutex);

signal(empty);

…

<consume item in nextc>

…

} while (true);

60

Readers-Writers Problem

• A data set is shared among a number of concurrent processes

▪ Readers – only read the data set; they do not perform any updates

▪ Writers – can both read and write

• Problem

▪ Allow multiple readers to read at the same time.

▪ Only one single writer can access the shared data at the same time

• Variants

▪ No new reader must wait when a writer is waiting for data access

▪ No new reader can start reading when a writer is waiting for data

access

61

Readers-Writers Problem

• Shared Data

▪ Data set

▪ Integer readcount initialized to 0

▪ Semaphore mutex initialized to 1

Mutual exclusion on readcount

▪ Semaphore wrt initialized to 1

Mutual exclusion on the data set by writers

62

Readers-Writers Problem

• The structure of a writer process

do {

wait (wrt);

// writing is performed

signal (wrt);

} while (true);

63

Readers-Writers Problem

• The structure of a reader process

do {

wait (mutex);

readcount ++;

if (readcount == 1)

wait (wrt);

signal (mutex) ;

// reading is performed

wait (mutex) ;

readcount --;

if (readcount == 0)

signal (wrt);

signal (mutex);

} while (true);

64

Dining-Philosophers Problem

• N philosophers’ sit at a round table with a bowel of rice in the middle.

• They spend their lives alternating thinking and eating.

• They do not interact with their neighbors.

• Occasionally try to pick up 2 chopsticks (one at a time) to eat from bowl

▪ Need both to eat, then release both when done

• In the case of 5 philosophers, the shared data

 Bowl of rice (data set)

 Semaphore chopstick [5] initialized to 1

65

Dining-Philosophers Problem Algorithm

• Semaphore Solution

• The structure of Philosopher i :

while (true){

wait (chopstick[i]);

wait (chopStick[(i + 1) % 5]);

/* eat for awhile */

signal (chopstick[i]);

signal (chopstick[(i + 1) % 5]);

/* think for awhile */

}

• What is the problem with this algorithm?

66

Dining-Philosophers Problem

• Deadlock

▪ A deadlock occurs if all philosophers start eating simultaneously

• Possible solutions to avoid deadlocks

▪ Only 4 philosophers can sit around the table

▪ A philosopher can take his/her chopsticks only if they both are

free

▪ An odd philosopher takes the chopstick on its left first, and then

the one on its right; an even philosopher takes the opposite

approach.

• Starvation

▪ Any solution must avoid that a philosopher may starve

67

Problems with Semaphores

• Incorrect use of semaphore operations:

▪ signal(mutex) … wait(mutex)

▪ wait(mutex) … wait(mutex)

▪ Omitting of wait (mutex) and/or signal (mutex)

68

Overview

• The Critical-Section Problem

• Software Solutions

• Synchronization Hardware

• Semaphores

• Monitors

• Synchronization Examples

69

Monitors

• A high-level abstraction that provides a convenient and effective
mechanism for process synchronization

• Abstract data type, internal variables only accessible by code within
the procedure

• Only one process may be active within the monitor at a time

• Pseudocode syntax of a monitor:

monitor monitor-name

{

// shared variable declarations

procedure P1 (…) { …. }

procedure P2 (…) { …. }

procedure Pn (…) {……}

initialization code (…) { … }

}

70

Schematic view of a Monitor

71

Monitor Implementation Using Semaphores

• Variables

semaphore mutex

mutex = 1

• Each procedure P is replaced by

wait(mutex);

…

body of P;

…

signal(mutex);

• Mutual exclusion within a monitor is ensured

72

Condition Variables

• condition x, y;

• Two operations are allowed on a condition variable:

▪ x.wait() – a process that invokes the operation is always

suspended until x.signal()

▪ x.signal() – resumes one of processes (if any) that invoked

x.wait()

 If no x.wait() on the variable, then it has no effect on the

variable

73

Monitor with Condition Variables

74

Usage of Condition Variable Example

• Consider P1 and P2 that that need to execute two statements S1 and

S2 and the requirement that S1 to happen before S2

▪ Create a monitor with two procedures F1 and F2 that are

invoked by P1 and P2 respectively

▪ One condition variable “x” initialized to 0

▪ One Boolean variable “done”

▪ F1:

S1;

done = true;

x.signal();

▪ F2:

if done = false

x.wait()

S2;

75

Monitor Implementation Using Semaphores

• Variables

semaphore mutex; // (initially = 1)

semaphore next; // (initially = 0)

int next_count = 0; // number of processes waiting

inside the monitor

• Each function P will be replaced by

wait(mutex);

…

body of P;

…

if (next_count > 0)

signal(next)

else

signal(mutex);

• Mutual exclusion within a monitor is ensured

76

Implementation – Condition Variables

• For each condition variable x, we have:

semaphore x_sem; // (initially = 0)

int x_count = 0;

• The operation x.wait() can be implemented as:

x_count++;

if (next_count > 0)

signal(next);

else

signal(mutex);

wait(x_sem);

x_count--;

77

Implementation (Cont.)

• The operation x.signal() can be implemented as:

if (x_count > 0) {

next_count++;

signal(x_sem);

wait(next);

next_count--;

}

78

Monitor Solution to Dining Philosophers

monitor DiningPhilosophers

{

enum { THINKING; HUNGRY, EATING) state [5] ;

condition self [5];

void pickup (int i) {

state[i] = HUNGRY;

test(i);

if (state[i] != EATING) self[i].wait();

}

void putdown (int i) {

state[i] = THINKING;

// test left and right neighbors

test((i + 4) % 5);

test((i + 1) % 5);

}

79

Solution to Dining Philosophers (Cont.)

void test (int i) {

if ((state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING)) {

state[i] = EATING ;

self[i].signal () ;

}

}

initialization_code() {

for (int i = 0; i < 5; i++)

state[i] = THINKING;

}

}

80

• Each philosopher “i” invokes the operations pickup() and
putdown() in the following sequence:

DiningPhilosophers.pickup(i);

/** EAT **/

DiningPhilosophers.putdown(i);

• No deadlock, but starvation is possible

Solution to Dining Philosophers (Cont.)

81

Overview

• The Critical-Section Problem

• Software Solutions

• Synchronization Hardware

• Semaphores

• Monitors

• Synchronization Examples

82

Linux Synchronization

• Linux:

▪ Prior to kernel Version 2.6, disables interrupts to implement

short critical sections

▪ Version 2.6 and later, fully preemptive

• Linux provides:

▪ Semaphores

▪ Atomic integers

▪ Spinlocks

▪ Reader-writer versions of both

• On single-CPU system, spinlocks replaced by enabling and

disabling kernel preemption

83

Linux Synchronization

• Atomic variables

atomic_t is the type for atomic integer

• Consider the variables

atomic_t counter;

int value;

84

Pthreads Synchronization

• Pthreads API is OS-independent

• It provides:

▪ mutex locks

▪ condition variables

• Non-portable extensions include:

▪ read-write locks

▪ spin locks

