
Processes and Threads

Alessio Vecchio
alessio.vecchio@unipi.it

Dip. di Ingegneria dell’Informazione
Università di Pisa

Based on original slides by Silberschatz, Galvin, and Gagne
Operating System Concepts

mailto:alessio.vecchio@unipi.it

2

Outline

• Processes

• Threads

• Scheduling algorithms

3

Process Concept

• Program is passive entity stored on disk (executable file),

process is active

▪ Program becomes originates when executable file loaded into

memory and run

• Execution of program started via GUI mouse clicks, command

line entry of its name, etc

• One program can be several processes

▪ Consider multiple users executing the same program

• Process – a program in execution; process execution must

progress in sequential fashion

4

Process Concept

• Multiple parts

▪ The program code, also called text section

▪ Current activity including program counter, processor

registers

▪ Stack containing temporary data

Function parameters, return addresses, local

variables

▪ Data section containing global variables

▪ Heap containing memory dynamically allocated during

run time

5

Process in Memory

6

Memory Layout of a C Program

7

Process State

• As a process executes, it changes state

▪ new: The process is being created

▪ running: Instructions are being executed

▪ waiting: The process is waiting for some event to occur

▪ ready: The process is waiting to be assigned to a

processor

▪ terminated: The process has finished execution

8

Diagram of Process State

9

Process Control Block (PCB)

Information associated with each process

(also called task control block)

• Process state – running, waiting, etc

• Program counter – location of

instruction to next execute

• CPU registers – contents of all process-

centric registers

• CPU scheduling information- priorities,

scheduling queue pointers

• Memory-management information –

memory allocated to the process

• Accounting information – CPU used,

clock time elapsed since start, time

limits

• I/O status information – I/O devices

allocated to process, list of open files

10

Process Representation in Linux

Represented by the C structure task_struct

pid t_pid; /* process identifier */

long state; /* state of the process */

unsigned int time_slice /* scheduling information */

struct task_struct *parent; /* this process’s parent */
struct list_head children; /* this process’s children */
struct files_struct *files; /* list of open files */

struct mm_struct *mm; /* address space of this process */

11

Process Scheduling

• Process scheduler selects among available processes

for next execution on CPU core

• Goal -- Maximize CPU use, quickly switch processes onto

CPU core

• Maintains scheduling queues of processes

▪ Ready queue – set of all processes residing in main

memory, ready and waiting to execute

▪ Wait queues – set of processes waiting for an event

(i.e., I/O)

▪ Processes migrate among the various queues

12

Ready and Wait Queues

13

Representation of Process Scheduling

14

Context Switch

• When CPU switches to another process, the system must save

the state of the old process and load the saved state for the

new process via a context switch

• Context of a process represented in the PCB

• Context-switch time is overhead; the system does no useful

work while switching

▪ The more complex the OS and the PCB ➔ the longer the

context switch

• Time dependent on hardware support

▪ Some hardware provides multiple sets of registers per CPU

➔ multiple contexts loaded at once

15

CPU Switch From Process to Process

16

Process Creation

• Parent process create children processes, which, in turn

create other processes, forming a tree of processes

• Generally, process identified and managed via a process

identifier (pid)

• Resource sharing options

▪ Parent and children share all resources

▪ Children share subset of parent’s resources

▪ Parent and child share no resources

• Execution options

▪ Parent and children execute concurrently

▪ Parent waits until children terminate

17

A Tree of Processes in Linux

i ni t

pi d = 1

s s hd

pi d = 3028

l ogi n

pi d = 8415
kt hr e add

pi d = 2

s s hd

pi d = 3610
pdf l us h

pi d = 200

khe l pe r

pi d = 6

t c s c h

pi d = 4005
e mac s

pi d = 9204

bas h

pi d = 8416

ps

pi d = 9298

18

Process Creation (Cont.)

• Address space

▪ Child duplicate of parent

▪ Child has a program loaded into it

• UNIX examples

▪ fork() system call creates new process

▪ exec() system call used after a fork() to replace the process’

memory space with a new program

▪ Parent process calls wait()waiting for the child to terminate

19

Process Termination

• Process executes last statement and then asks the operating
system to delete it using the exit() system call.

▪ Returns status data from child to parent (via wait())

▪ Process’ resources are deallocated by operating system

• Parent may terminate the execution of children processes using
the abort() system call. Some reasons for doing so:

▪ Child has exceeded allocated resources

▪ Task assigned to child is no longer required

▪ The parent is exiting and the operating systems does not

allow a child to continue if its parent terminates

20

Process Termination

• Some operating systems do not allow child to exists if its parent has

terminated. If a process terminates, then all its children must also be

terminated.

▪ cascading termination. All children, grandchildren, etc. are

terminated.

▪ The termination is initiated by the operating system.

• The parent process may wait for termination of a child process by
using the wait()system call. The call returns status information and

the pid of the terminated process

pid = wait(&status);

• If no parent waiting (did not invoke wait()) process is a zombie

• If parent terminated without invoking wait(), process is an orphan

21

Example in UNIX

#include <iostream>

#include <unistd.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/wait.h>

using namespace std;

int main(int argc, char* argv[]) {

pid_t pid;

pid=fork(); /* genera un nuovo processo */

if(pid<0) { /* errore */

cout << "Errore nella creazione del processo\n";

exit(-1);

} else if(pid==0) { /* processo figlio */

execlp("/usr/bin/touch", "touch", "my_new_file", NULL);

} else { /* processo genitore */

int status;

pid = wait(&status);

cout << "Il processo figlio " << pid << " ha terminato\n";

exit(0);

}

}

22

Multiprocess Architecture – Chrome Browser

• Many web browsers ran as single process (some still do)

▪ If one web site causes trouble, entire browser can hang or crash

• Google Chrome Browser is multiprocess with 3 different types of

processes:

▪ Browser process manages user interface, disk and network I/O

▪ Renderer process renders web pages, deals with HTML,

Javascript. A new renderer created for each website opened

 Runs in sandbox restricting disk and network I/O, minimizing

effect of security exploits

▪ Plug-in process for each type of plug-in

23

Multitasking in Mobile Systems

• Some mobile systems (e.g., early version of iOS) allow only one

process to run, others suspended

• Due to screen real estate, user interface limits iOS provides for a

▪ Single foreground process- controlled via user interface

▪ Multiple background processes– in memory, running, but not

on the display, and with limits

▪ Limits include single, short task, receiving notification of events,

specific long-running tasks like audio playback

• Android runs foreground and background, with fewer limits

▪ Background process uses a service to perform tasks

▪ Service can keep running even if background process is

suspended

▪ Service has no user interface, small memory use

24

Threads

• Most modern applications are multithreaded

• Threads run within application

• Multiple tasks with the application can be implemented by

separate threads

▪ Update display

▪ Fetch data

▪ Spell checking

▪ Answer a network request

• Process creation is heavy-weight while thread creation is

light-weight

• Can simplify code, increase efficiency

• Kernels are generally multithreaded

25

Single and Multithreaded Processes

26

Multithreaded Server Architecture

27

Benefits

• Responsiveness – may allow continued execution if part of

process is blocked, especially important for user interfaces

• Resource Sharing – threads share resources of process, easier

than shared memory or message passing

• Economy – cheaper than process creation, thread switching

lower overhead than context switching

• Scalability – process can take advantage of multiprocessor

architectures

28

Multicore Programming

• Multicore or multiprocessor systems putting pressure on

programmers, challenges include:

▪ Dividing activities

▪ Balance

▪ Data splitting

▪ Data dependency

▪ Testing and debugging

• Parallelism implies a system can perform more than one task

simultaneously

• Concurrency supports more than one task making progress

▪ Single processor / core, scheduler providing concurrency

29

Concurrency vs. Parallelism

▪ Concurrent execution on single-core system:

▪ Parallelism on a multi-core system:

30

Multicore Programming (Cont.)

• Types of parallelism

▪ Data parallelism – distributes subsets of the same data

across multiple cores, same operation on each

▪ Task parallelism – distributing threads across cores, each

thread performing unique operation

31

Data and Task Parallelism

32

Amdahl’s Law

• Identifies performance gains from adding additional cores to an

application that has both serial and parallel components

• S is serial portion

• N processing cores

• That is, if application is 75% parallel / 25% serial, moving from 1 to 2

cores results in speedup of 1.6 times

• As N approaches infinity, speedup approaches 1 / S

• Serial portion of an application has important effect on performance

gained by adding additional cores

33

Amdahl’s Law

34

User Threads and Kernel Threads

• User threads - management done by user-level threads library

• Three primary thread libraries:

▪ POSIX Pthreads

▪ Windows threads

▪ Java threads

• Kernel threads - Supported by the Kernel

• Examples – virtually all general -purpose operating systems, including:

▪ Windows

▪ Linux

▪ Mac OS X

▪ iOS

▪ Android

35

User and Kernel Threads

36

Multithreading Models

• Many-to-One

• One-to-One

• Many-to-Many

37

Many-to-One

• Many user-level threads mapped to single kernel thread

• One thread blocking causes all to block

• Multiple threads may not run in parallel on muticore system because

only one may be in kernel at a time

• Few systems currently use this model

• Examples:

▪ Solaris Green Threads

▪ GNU Portable Threads

38

One-to-One

• Each user-level thread maps to kernel thread

• Creating a user-level thread creates a kernel thread

• More concurrency than many-to-one

• Number of threads per process sometimes restricted due to overhead

• Examples

▪ Windows

▪ Linux

39

Many-to-Many Model

• Allows many user level threads to be mapped to many kernel threads

• Allows the operating system to create a sufficient number of kernel

threads

• Windows with the ThreadFiber package

• Otherwise not very common

40

Two-level Model

• Similar to M:M, except that it allows a user thread to be bound to

kernel thread

• Examples

▪ IRIX

▪ HP-UX

▪ Tru64 UNIX

▪ Solaris 8 and earlier

41

Thread Libraries

• Thread library provides programmer with API for creating

and managing threads

• Two primary ways of implementing

▪ Library entirely in user space

▪ Kernel-level library supported by the OS

42

Pthreads

• May be provided either as user-level or kernel-level

• A POSIX standard (IEEE 1003.1c) API for thread creation and

synchronization

• Specification, not implementation

• API specifies behavior of the thread library, implementation is

up to development of the library

• Common in UNIX operating systems (Linux, Mac OS X)

43

Threading Issues

• Semantics of fork() and exec() system calls

• Signal handling

▪ Synchronous and asynchronous

• Thread cancellation of target thread

▪ Asynchronous or deferred

44

Semantics of fork() and exec()

• Does fork()duplicate only the calling thread or all

threads?

▪ Some UNIXes have two versions of fork

• exec() usually works as normal – replace the running

process including all threads

45

Signal Handling

• Signals are used in UNIX systems to notify a process that a particular event

has occurred.

• A signal handler is used to process signals

▪ Signal is generated by particular event

▪ Signal is delivered to a process

▪ Signal is handled by one of two signal handlers:

 default

 user-defined

• Every signal has default handler that kernel runs when handling signal

▪ User-defined signal handler can override default

▪ For single-threaded, signal delivered to process

46

Signal Handling (Cont.)

• Where should a signal be delivered for multi-threaded?

▪ Deliver the signal to the thread to which the signal applies

▪ Deliver the signal to every thread in the process

▪ Deliver the signal to certain threads in the process

▪ Assign a specific thread to receive all signals for the process

47

Thread Cancellation

• Terminating a thread before it has finished

• Thread to be canceled is target thread

• Two general approaches:

▪ Asynchronous cancellation terminates the target thread

immediately

▪ Deferred cancellation allows the target thread to periodically

check if it should be cancelled

• Pthread code to create and cancel a thread:

48

Thread Cancellation (Cont.)

• Invoking thread cancellation requests cancellation, but actual

cancellation depends on thread state

• If thread has cancellation disabled, cancellation remains pending

until thread enables it

• Default type is deferred

▪ Cancellation only occurs when thread reaches cancellation

point

 I.e. pthread_testcancel()

 Then cleanup handler is invoked

• On Linux systems, thread cancellation is handled through signals

49

Operating System Examples

• Windows Threads

• Linux Threads

50

Windows Threads

• Windows API – primary API for Windows applications

• Implements the one-to-one mapping, kernel-level

• Each thread contains

▪ A thread id

▪ Register set representing state of processor

▪ Separate user and kernel stacks for when thread runs in

user mode or kernel mode

▪ Private data storage area used by run-time libraries and

dynamic link libraries (DLLs)

• The register set, stacks, and private storage area are known as

the context of the thread

51

Windows Threads Data Structures

The primary data structures of a

thread include:

• ETHREAD (executive thread

block) – includes pointer to

process to which thread belongs

and to KTHREAD, in kernel space

• KTHREAD (kernel thread block) –

scheduling and synchronization

info, kernel-mode stack, pointer to

TEB, in kernel space

• TEB (thread environment block) –

thread id, user-mode stack,

thread-local storage, in user

space

52

Linux Threads

• Linux refers to them as tasks rather than threads

• Thread creation is done through clone() system call

• clone() allows a child task to share the address space of the

parent task (process)

▪ Flags control behavior

• struct task_struct points to process data structures

(shared or unique)

53

Process Scheduling

• Maximize CPU use, quickly switch processes onto CPU for

time sharing

• Process scheduler selects among available processes for

next execution on CPU

• Maintains scheduling queues of processes

▪ Job queue – set of all processes in the system

▪ Ready queue – set of all processes residing in main

memory, ready and waiting to execute

▪ Device queues – set of processes waiting for an I/O device

▪ Processes migrate among the various queues

54

Basic Concepts

• Maximum CPU utilization

obtained with multiprogramming

• CPU–I/O Burst Cycle – Process

execution consists of a cycle of

CPU execution and I/O wait

• CPU burst followed by I/O burst

• CPU burst distribution is of main

concern

55

Histogram of CPU-burst Times

Large number of short bursts

Small number of longer bursts

56

CPU Scheduler

• The CPU scheduler selects from among the processes in ready

queue, and allocates a CPU core to one of them

▪ Queue may be ordered in various ways

• CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

• For situations 1 and 4, there is no choice in terms of scheduling. A

new process (if one exists in the ready queue) must be selected

for execution.

• For situations 2 and 3, however, there is a choice.

57

Preemptive and Nonpreemptive Scheduling

• When scheduling takes place only under circumstances 1 and

4, the scheduling scheme is nonpreemptive.

• Otherwise, it is preemptive.

• Under Nonpreemptive scheduling, once the CPU has been

allocated to a process, the process keeps the CPU until it

releases it either by terminating or by switching to the waiting

state.

• Virtually all modern operating systems including Windows,

MacOS, Linux, and UNIX use preemptive scheduling

algorithms.

58

Preemptive Scheduling and Race Conditions

• Preemptive scheduling can result in race conditions

when data are shared among several processes.

• Consider the case of two processes that share data.

While one process is updating the data, it is preempted

so that the second process can run. The second process

then tries to read the data, which are in an inconsistent

state.

• This issue will be explored in next lectures.

59

Scheduling Criteria

• CPU utilization – keep the CPU as busy as possible

• Throughput – # of processes that complete their execution per

time unit

• Turnaround time – amount of time to execute a particular

process

• Waiting time – amount of time a process has been waiting in the

ready queue

• Response time – amount of time it takes from when a request

was submitted until the first response is produced, not output (for

time-sharing environment)

60

First- Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3

P3 3

• Suppose that the processes arrive in the order: P1 , P2 , P3

The schedule is:

• Waiting time for P1 = 0; P2 = 24; P3 = 27

• Average waiting time: (0 + 24 + 27)/3 = 17

P P P
1 2 3

0 24 3027

61

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

P2 , P3 , P1

• The schedule is:

• Waiting time for P1 = 6; P2 = 0; P3 = 3

• Average waiting time: (6 + 0 + 3)/3 = 3

• Much better than previous case

• Convoy effect - short process behind long process

▪ Consider one CPU-bound and many I/O-bound processes

P
1

0 3 6 30

P
2

P
3

62

Shortest-Job-First (SJF) Scheduling

• Associate with each process the length of its next CPU burst

▪ Use these lengths to schedule the process with the

shortest time

• SJF is optimal – gives minimum average waiting time for a

given set of processes

• Preemptive version called shortest-remaining-time-first

• How do we determine the length of the next CPU burst?

▪ Could ask the user

▪ Estimate

63

Example of SJF

ProcessArrival Time Burst Time

P1 0.0 6

P2 2.0 8

P3 4.0 7

P4 5.0 3

• SJF scheduling chart

• Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P
3

0 3 24

P
4

P
1

169

P
2

64

Determining Length of Next CPU Burst

• Can only estimate the length – should be similar to the previous one

▪ Then pick process with shortest predicted next CPU burst

• Can be done by using the length of previous CPU bursts, using

exponential averaging

• Commonly, α set to ½

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of length actual 1.



=

=

+



 1n

th
n nt

65

Prediction of the Length of the Next CPU Burst

66

Examples of Exponential Averaging

•  =0

▪ n+1 = n

▪ Recent history does not count

•  =1

▪ n+1 =  tn

▪ Only the actual last CPU burst counts

• If we expand the formula, we get:

n+1 =  tn+(1 - ) tn -1 + …

+(1 - )j  tn -j + …

+(1 - )n +1 0

• Since both  and (1 - ) are less than or equal to 1, each successive
term has less weight than its predecessor

67

Example of Shortest-remaining-time-first

• Now we add the concepts of varying arrival times and preemption to

the analysis

ProcessAarri Arrival TimeT Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

• Preemptive SJF

• Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5

msec

P
4

0 1 26

P
1

P
2

10

P
3

P
1

5 17

68

Round Robin (RR)

• Each process gets a small unit of CPU time (time quantum q),

usually 10-100 milliseconds. After this time has elapsed, the

process is preempted and added to the end of the ready queue.

• If there are n processes in the ready queue and the time quantum

is q, then each process gets 1/n of the CPU time in chunks of at

most q time units at once. No process waits more than (n-1)q

time units.

• Timer interrupts every quantum to schedule next process

• Performance

▪ q large  FIFO

▪ q small  q must be large with respect to context switch,

otherwise overhead is too high

69

Example of RR with Time Quantum = 4

Process Burst Time

P1 24

P2 3

P3 3

• The Gantt chart is:

• Typically, higher average turnaround than SJF, but better response

• q should be large compared to context switch time

▪ q usually 10 milliseconds to 100 milliseconds,

▪ Context switch < 10 microseconds

P P P
1 1 1

0 18 3026144 7 10 22

P
2

P
3

P
1

P
1

P
1

70

Time Quantum and Context Switch Time

Emprical rule: 80% of CPU bursts should be shorter than q

71

Priority Scheduling

• A priority number (integer) is associated with each process

• The CPU is allocated to the process with the highest priority (smallest

integer  highest priority)

▪ Preemptive

▪ Nonpreemptive

• SJF is priority scheduling where priority is the inverse of predicted next

CPU burst time

• Problem  Starvation – low priority processes may never execute

• Solution  Aging – as time progresses increase the priority of the

process

72

Example of Priority Scheduling

ProcessA arri Burst TimeT Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

• Priority scheduling Gantt Chart

• Average waiting time = 8.2

73

Priority Scheduling w/ Round-Robin

ProcessA arri Burst TimeT Priority

P1 4 3

P2 5 2

P3 8 2

P4 7 1

P5 3 3

• Run the process with the highest priority. Processes with the same

priority run round-robin

• Gantt Chart with time quantum = 2

74

Multilevel Queue

• Ready queue is partitioned into separate queues, eg:

▪ foreground (interactive)

▪ background (batch)

• Process permanently in a given queue

• Each queue has its own scheduling algorithm:

▪ foreground – RR

▪ background – FCFS

• Scheduling must be done between the queues:

▪ Fixed priority scheduling; (i.e., serve all from foreground then

from background). Possibility of starvation.

▪ Time slice – each queue gets a certain amount of CPU time

which it can schedule amongst its processes; i.e., 80% to

foreground in RR, 20% to background in FCFS

75

Multilevel Queue

• Prioritization based upon process type

76

Multilevel Feedback Queue

• A process can move between the various queues.

• Multilevel-feedback-queue scheduler defined by the following

parameters:

▪ Number of queues

▪ Scheduling algorithms for each queue

▪ Method used to determine when to upgrade a process

▪ Method used to determine when to demote a process

▪ Method used to determine which queue a process will enter

when that process needs service

• Aging can be implemented using multilevel feedback queue

77

Example of Multilevel Feedback Queue

• Three queues:

▪ Q0 – RR with time quantum 8

milliseconds

▪ Q1 – RR time quantum 16 milliseconds

▪ Q2 – FCFS

• Scheduling

▪ A new job enters queue Q0 which is

served FCFS

 When it gains CPU, job receives 8

milliseconds

 If it does not finish in 8

milliseconds, job is moved to

queue Q1

▪ At Q1 job is again served FCFS and

receives 16 additional milliseconds

 If it still does not complete, it is

preempted and moved to queue Q2

78

Multiple-Processor Scheduling

• Symmetric multiprocessing (SMP) is where each processor is self

scheduling.

• All threads may be in a common ready queue (a)

• Each processor may have its own private queue of threads (b)

79

Multithreaded Multicore System

• As # of threads grows, so does architectural support for threading

▪ CPUs have cores as well as hardware threads

▪ Takes advantage of memory stall to make progress on another thread

while memory retrieve happens

80

• Chip-multithreading (CMT)

assigns each core multiple

hardware threads. (Intel refers

to this as hyperthreading.)

• On a quad-core system with 2

hardware threads per core, the

operating system sees 8 logical

processors.

Multithreaded Multicore System

81

Multithreaded Multicore System

• Two levels of scheduling:

1. The operating system

deciding which

software thread to run

on a logical CPU

2. How each core

decides which

hardware thread to

run on the physical

core.

82

Multiple-Processor Scheduling – Load Balancing

• If SMP, need to keep all CPUs loaded for efficiency

• Load balancing attempts to keep workload evenly distributed

• Push migration – periodic task checks load on each processor, and if

found pushes task from overloaded CPU to other CPUs

• Pull migration – idle processors pulls waiting task from busy

processor

83

Multiple-Processor Scheduling – Processor Affinity

• When a thread has been running on one processor, the cache contents

of that processor stores the memory accesses by that thread.

• We refer to this as a thread having affinity for a processor (i.e.,

“processor affinity”)

• Load balancing may affect processor affinity as a thread may be moved

from one processor to another to balance loads, yet that thread loses

the contents of what it had in the cache of the processor it was moved

off of.

• Soft affinity – the operating system attempts to keep a thread running

on the same processor, but no guarantees.

• Hard affinity – allows a process to specify a set of processors it may

run on.

84

Operating System Examples

• Windows XP scheduling

• Linux scheduling

85

Windows Scheduling

• Windows uses priority-based preemptive scheduling

• Highest-priority thread runs next

• Dispatcher is scheduler

• Thread runs until (1) blocks, (2) uses time slice, (3)

preempted by higher-priority thread

• Real-time threads can preempt non-real-time

• 32-level priority scheme

• Variable class is 1-15, real-time class is 16-31

• Priority 0 is memory-management thread

• Queue for each priority

• If no run-able thread, runs idle thread

86

Windows Priority Classes

• Win32 API identifies several priority classes to which a process can

belong

▪ REALTIME_PRIORITY_CLASS, HIGH_PRIORITY_CLASS,

ABOVE_NORMAL_PRIORITY_CLASS,NORMAL_PRIORITY_CL

ASS, BELOW_NORMAL_PRIORITY_CLASS,

IDLE_PRIORITY_CLASS

▪ All are variable except REALTIME

• A thread within a given priority class has a relative priority

▪ TIME_CRITICAL, HIGHEST, ABOVE_NORMAL, NORMAL,

BELOW_NORMAL, LOWEST, IDLE

• Priority class and relative priority combine to give numeric priority

• Base priority is NORMAL within the class

• If quantum expires, priority lowered, but never below base

87

Windows Priority Classes (Cont.)

• If wait occurs, priority boosted depending on what was waited for

• Foreground window given 3x priority boost

• Windows 7 added user-mode scheduling (UMS)

▪ Applications create and manage threads independent of kernel

▪ For large number of threads, much more efficient

▪ UMS schedulers come from programming language libraries like

C++ Concurrent Runtime (ConcRT) framework

88

Windows Priorities

89

Linux Scheduling Through Version 2.5

• Prior to kernel version 2.5, ran variation of standard UNIX
scheduling algorithm

• Version 2.5 moved to constant order O(1) scheduling time

▪ Preemptive, priority based

▪ Two priority ranges: time-sharing and real-time

▪ Real-time range from 0 to 99 and nice value from 100 to 140

▪ Map into global priority with numerically lower values indicating higher
priority

▪ Higher priority gets larger q

▪ Task run-able as long as time left in time slice (active)

▪ If no time left (expired), not run-able until all other tasks use their slices

▪ All run-able tasks tracked in per-CPU runqueue data structure

 Two priority arrays (active, expired)

 Tasks indexed by priority

 When no more active, arrays are exchanged

▪ Worked well, but poor response times for interactive processes

90

Priorities and Time-slice length

91

RunQueue

• The runqueue consists of two different arrays

▪ Active array

▪ Expired array

92

Priority Calculation

• Real time tasks have static priority

• Time-sharing tasks have dynamic priority

▪ Based on nice value +/- 5

▪ +/- 5 depends on how much the task is interactive

 Tasks with low waiting times are assumed to be scarcely interactive

 Tasks with large waiting times are assumed to be highly interactive

• Priority re-computation is carried out every time a task has exhausted its

time slice

93

Linux 2.6+ Scheduling

• Recent versions of Linux include a new scheduler: Completely Fair

Scheduler (CFS)

▪ Idea: when the time for tasks is not balanced (one or more tasks are not

given a fair amount of time relative to others), then these tasks should

be given time to execute.

• CFS registers the amount of time provided to a given task (the virtual

runtime)

• The smaller a task's virtual runtime—meaning the smaller amount of time a

task has been granted the CPU—the higher its need for the processor.

94

Linux 2.6+ Scheduling

• Tasks are stored in a red-black tree (not a queue) ordered in terms of virtual

time

▪ A red-black tree is roughly balanced: any path in the tree will never be

more than twice as long as any other path.

▪ Insert and deletion are O(log n)

95

Linux 2.6+ Scheduling

• The scheduler picks the left-most node of the red-black tree. The task

accounts for its time with the CPU by adding its execution time to the virtual

runtime and is then inserted back into the tree if runnable.

• CFS doesn't use priorities directly but instead uses them as a decay factor

for the time a task is permitted to execute.

▪ Lower-priority tasks have higher factors of decay, where higher-priority

tasks have lower factors of delay.

▪ This means that the time a task is permitted to execute dissipates more

quickly for a lower-priority task than for a higher-priority task.

▪ This avoids maintaining run queues per priority.

