
Introduzione ai

Sistemi Operativi

Alessio Vecchio
alessio.vecchio@unipi.it

Dip.di Ingegneria dell’Informazione
Università di Pisa

Based on original slides by Silberschatz, Galvin, and Gagne
Operating System Concepts

mailto:alessio.vecchio@unipi.it

2

What is an Operating System?

• A program that acts as an intermediary between

a user of a computer and the computer

hardware

• Operating system goals:

▪ Execute user programs and make solving

user problems easier

▪ Make the computer system convenient to use

▪ Use the computer hardware in an efficient

manner

3

Abstract View

4

What Operating Systems Do

• Depends on the point of view

• Users want convenience, ease of use and good performance

▪ Don’t care about resource utilization

• But shared computer such as mainframe or minicomputer must keep

all users happy

▪ Operating system is a resource allocator and control program

making efficient use of HW and managing execution of user

programs

• Users of dedicate systems such as workstations have dedicated

resources but frequently use shared resources from servers

• Mobile devices like smartphones and tables are resource poor,

optimized for usability and battery life

▪ Mobile user interfaces such as touch screens, voice recognition

• Some computers have little or no user interface, such as embedded

computers in devices and automobiles

▪ Run primarily without user intervention

5

Operating System Definition

• OS is a resource allocator

▪ Manages all resources

▪ Decides between conflicting requests for

efficient and fair resource use

• OS is a control program

▪ Controls execution of programs to prevent

errors and improper use of the computer

6

Operating System Definition

• No universally accepted definition

• “Everything a vendor ships when you order an operating system” is a

good approximation

▪ But varies wildly

• “The one program running at all times on the computer” is the kernel,

part of the operating system

• Everything else is either

▪ A system program (ships with the operating system, but not part of

the kernel) , or

▪ An application program, all programs not associated with the

operating system

• Today’s OSes for general purpose and mobile computing also include

middleware – a set of software frameworks that provide addition services

to application developers such as databases, multimedia, graphics

7

Computer System Organization

• Computer-system operation

▪ One or more CPUs, device controllers connect through common

bus providing access to shared memory

▪ Concurrent execution of CPUs and devices competing for memory

cycles

8

Computer-System Operation

• I/O devices and the CPU can execute concurrently

• Each device controller is in charge of a particular device type

• Each device controller has a local buffer

• Each device controller type has an operating system device driver

to manage it

• CPU moves data from/to main memory to/from local buffers

• I/O is from the device to local buffer of controller

• Device controller informs CPU that it has finished its operation by

causing an interrupt

9

Common Functions of Interrupts

• Interrupt transfers control to the interrupt service routine

generally, through the interrupt vector, which contains the

addresses of all the service routines

• Interrupt architecture must save the address of the interrupted

instruction

• A trap or exception is a software-generated interrupt caused

either by an error or a user request

• An operating system is interrupt driven

10

Interrupt Timeline

11

Interrupt Handling

• The operating system preserves the state of the CPU by

storing the registers and the program counter

• Determines which type of interrupt has occurred

• Separate segments of code determine what action should

be taken for each type of interrupt

12

Interrupt-driven I/O Cycle

13

How a Modern Computer Works

A von Neumann architecture

14

Direct Memory Access Structure

• Used for high-speed I/O devices able to transmit information

at close to memory speeds

• Device controller transfers blocks of data from buffer storage

directly to main memory without CPU intervention

• Only one interrupt is generated per block, rather than the one

interrupt per byte

15

Operating-System Operations

• Bootstrap program – simple code to initialize the system, load the
kernel

• Kernel loads

• Starts system daemons (services provided outside of the kernel)

• Kernel interrupt driven (hardware and software)

▪ Hardware interrupt by one of the devices

▪ Software interrupt (exception or trap):

 Software error (e.g., division by zero)

 Request for operating system service – system call

16

Computer-System Architecture

• Most systems use a single general-purpose processor

▪ Most systems have special-purpose processors as well

• Multiprocessors systems growing in use and importance

▪ Also known as parallel systems, tightly-coupled systems

▪ Advantages include:

1. Increased throughput

2. Economy of scale

3. Increased reliability – graceful degradation or fault tolerance

▪ Two types:

1. Asymmetric Multiprocessing – each processor is assigned a

specie task.

2. Symmetric Multiprocessing – each processor performs all tasks

17

Symmetric Multiprocessing Architecture

18

Dual-Core Design

• Multi-chip and multicore

• Systems containing all chips

▪ Chassis containing multiple separate systems

19

Clustered Systems

• Like multiprocessor systems, but multiple systems working together

▪ Usually sharing storage via a storage-area network (SAN)

▪ Provides a high-availability service which survives failures

 Asymmetric clustering has one machine in hot-standby mode

 Symmetric clustering has multiple nodes running applications,

monitoring each other

▪ Some clusters are for high-performance computing (HPC)

 Applications must be written to use parallelization

20

Clustered Systems

21

Multiprogramming

• Multiprogramming (Batch system) needed for efficiency

▪ Single user cannot keep CPU and I/O devices busy at all times

▪ Multiprogramming organizes jobs (code and data) so CPU always has one
to execute

▪ A subset of total jobs in system is kept in memory

▪ One job selected and run via job scheduling

▪ When it has to wait (for I/O for example), OS switches to another job

• Timesharing (multitasking) is logical extension in which CPU switches jobs
so frequently that users can interact with each job while it is running, creating

interactive computing

▪ Response time should be small

▪ Each user has at least one program executing in memory process

▪ If several jobs ready to run at the same time CPU scheduling

▪ If processes don’t fit in memory, swapping moves them in and out to run

▪ Virtual memory allows execution of processes not completely in memory

22

Memory Layout for Multiprogrammed System

23

Dual-mode Operation

• Dual-mode operation allows OS to protect itself and other
system components

▪ User mode and kernel mode

• Mode bit provided by hardware

▪ Provides ability to distinguish when system is running user
code or kernel code.

▪ When a user is running mode bit is “user”

▪ When kernel code is executing mode bit is “kernel”

• How do we guarantee that user does not explicitly set the mode
bit to “kernel”?

▪ System call changes mode to kernel, return from call resets
it to user

• Some instructions designated as privileged, only executable in
kernel mode

24

Transition from User to Kernel Mode

25

Timer

• Timer to prevent infinite loop (or process hogging resources)

▪ Timer is set to interrupt the computer after some time period

▪ Keep a counter that is decremented by the physical clock

▪ Operating system set the counter (privileged instruction)

▪ When counter zero generate an interrupt

▪ Set up before scheduling process to regain control or terminate

program that exceeds allotted time

26

Process Management

• A process is a program in execution. It is a unit of work within the
system. Program is a passive entity; process is an active entity.

• Process needs resources to accomplish its task

▪ CPU, memory, I/O, files

▪ Initialization data

• Process termination requires reclaim of any reusable resources

• Single-threaded process has one program counter specifying location
of next instruction to execute

▪ Process executes instructions sequentially, one at a time, until
completion

• Multi-threaded process has one program counter per thread

• Typically system has many processes, some user, some operating
system running concurrently on one or more CPUs

▪ Concurrency by multiplexing the CPUs among the processes /
threads

27

Process Management Activities

• Creating and deleting both user and system processes

• Suspending and resuming processes

• Providing mechanisms for process synchronization

• Providing mechanisms for process communication

• Providing mechanisms for deadlock handling

The operating system is responsible for the following activities in

connection with process management:

28

Memory Management

• To execute a program all (or part) of the instructions must be in

memory

• All (or part) of the data that is needed by the program must be in

memory.

• Memory management determines what is in memory and when

▪ Optimizing CPU utilization and computer response to users

• Memory management activities

▪ Keeping track of which parts of memory are currently being

used and by whom

▪ Deciding which processes (or parts thereof) and data to

move into and out of memory

▪ Allocating and deallocating memory space as needed

29

Storage Management

• OS provides uniform, logical view of information storage

▪ Abstracts physical properties to logical storage unit - file

▪ Each medium is controlled by device (i.e., disk drive, tape drive)

 Varying properties include access speed, capacity, data-
transfer rate, access method (sequential or random)

• File-System management

▪ Files usually organized into directories

▪ Access control on most systems to determine who can access
what

▪ OS activities include

 Creating and deleting files and directories

 Primitives to manipulate files and directories

 Mapping files onto secondary storage

 Backup files onto stable (non-volatile) storage media

30

Mass-Storage Management

• Usually disks used to store data that does not fit in main

memory or data that must be kept for a “long” period of time

• Proper management is of central importance

• Entire speed of computer operation hinges on disk subsystem

and its algorithms

• OS activities

▪ Mounting and unmounting

▪ Free-space management

▪ Storage allocation

▪ Disk scheduling

▪ Partitioning

▪ Protection

31

I/O Subsystem

• One purpose of OS is to hide peculiarities of hardware devices

from the user

• I/O subsystem responsible for

▪ Memory management of I/O including buffering (storing data

temporarily while it is being transferred), caching (storing parts

of data in faster storage for performance), spooling (the

overlapping of output of one job with input of other jobs)

▪ General device-driver interface

▪ Drivers for specific hardware devices

32

Protection and Security

• Protection – any mechanism for controlling access of processes or
users to resources defined by the OS

• Security – defense of the system against internal and external attacks

▪ Huge range, including denial-of-service, worms, viruses, identity
theft, theft of service

• Systems generally first distinguish among users, to determine who
can do what

▪ User identities (user IDs, security IDs) include name and
associated number, one per user

▪ User ID then associated with all files, processes of that user to
determine access control

▪ Group identifier (group ID) allows set of users to be defined and
controls managed, then also associated with each process, file

▪ Privilege escalation allows user to change to effective ID with
more rights

33

Operating-System Structures

• Chapter 2 of Operating System Concepts

▪ Operating System Services

▪ User Operating System Interface

▪ System Calls

▪ Types of System Calls

▪ System Programs

▪ Operating System Design and Implementation

▪ Operating System Structure

▪ System Boot

34

Operating System Services

• Operating systems provide an environment for execution of

programs and services to programs and users

• One set of operating-system services provides functions that

are helpful to the user:

▪ User interface - Almost all operating systems have a user

interface (UI).

 Varies between Command-Line (CLI), Graphics User

Interface (GUI), Batch

▪ Program execution - The system must be able to load a

program into memory and to run that program, end

execution, either normally or abnormally (indicating error)

▪ I/O operations - A running program may require I/O,

which may involve a file or an I/O device

35

Operating System Services (Cont.)

• One set of operating-system services provides functions that are helpful to

the user (Cont.):

▪ File-system manipulation - The file system is of particular interest.

Programs need to read and write files and directories, create and

delete them, search them, list file information, permission

management.

▪ Communications – Processes may exchange information, on the

same computer or between computers over a network

 Communications may be via shared memory or through message

passing (packets moved by the OS)

▪ Error detection – OS needs to be constantly aware of possible errors

 May occur in the CPU and memory hardware, in I/O devices, in

user program

 For each type of error, OS should take the appropriate action to

ensure correct and consistent computing

 Debugging facilities can greatly enhance the user’s and

programmer’s abilities to efficiently use the system

36

Operating System Services (Cont.)

• Another set of OS functions exists for ensuring the efficient
operation of the system itself via resource sharing

▪ Resource allocation - When multiple users or multiple jobs
running concurrently, resources must be allocated to each of
them

 Many types of resources - CPU cycles, main memory, file
storage, I/O devices.

▪ Accounting - To keep track of which users use how much and
what kinds of computer resources

▪ Protection and security - The owners of information stored in
a multiuser or networked computer system may want to control
use of that information, concurrent processes should not
interfere with each other

 Protection involves ensuring that all access to system
resources is controlled

 Security of the system from outsiders requires user
authentication, extends to defending external I/O devices
from invalid access attempts

37

A View of Operating System Services

38

User Operating System Interface - CLI

CLI or command interpreter allows direct command

entry

▪ Sometimes implemented in kernel, sometimes by

systems program

▪ Sometimes multiple flavors implemented – shells

▪ Primarily fetches a command from user and

executes it

▪ Sometimes commands built-in, sometimes just

names of programs

If the latter, adding new features doesn’t require

shell modification

39

Bourne Shell Command Interpreter

40

User Operating System Interface - GUI

• User-friendly desktop metaphor interface

▪ Usually mouse, keyboard, and monitor

▪ Icons represent files, programs, actions, etc

▪ Various mouse buttons over objects in the interface cause

various actions (provide information, options, execute

function, open directory (known as a folder)

▪ Invented at Xerox PARC

• Many systems now include both CLI and GUI interfaces

▪ Microsoft Windows is GUI with CLI “command” shell

▪ Apple Mac OS X is “Aqua” GUI interface with UNIX kernel

underneath and shells available

▪ Unix and Linux have CLI with optional GUI interfaces

(CDE, KDE, GNOME)

41

Touchscreen Interfaces

• Touchscreen devices require new

interfaces

▪ Mouse not possible or not desired

▪ Actions and selection based on

gestures

▪ Virtual keyboard for text entry

• Voice commands

42

The Mac OS X GUI

43

System Calls

• Programming interface to the services
provided by the OS

• Typically written in a high-level language (C
or C++)

• Mostly accessed by programs via a high-
level Application Programming Interface
(API) rather than direct system call use

• Three most common APIs are

▪ Win32 API for Windows,

▪ POSIX API for POSIX-based systems
(including virtually all versions of UNIX,
Linux, and Mac OS X),

▪ and Java API for the Java virtual
machine (JVM)

44

Example of System Calls

• System call sequence to copy the contents of one file to another file

45

Example of Standard API

46

System Call Implementation

• Typically, a number associated with each system call

▪ System-call interface maintains a table indexed

according to these numbers

• The system call interface invokes the intended system call

in OS kernel and returns status of the system call and any

return values

• The caller need know nothing about how the system call is

implemented

▪ Just needs to obey API and understand what OS will do

as a result call

▪ Most details of OS interface hidden from programmer

by API

Managed by run-time support library (set of functions

built into libraries included with compiler)

47

API – System Call – OS Relationship

48

System Call Parameter Passing

• Often, more information is required than simply identity of
desired system call

▪ Exact type and amount of information vary according to OS
and call

• Three general methods used to pass parameters to the OS

▪ Simplest: pass the parameters in registers

 In some cases, may be more parameters than registers

▪ Parameters stored in a block, or table, in memory, and
address of block passed as a parameter in a register

This approach taken by Linux and Solaris

▪ Parameters placed, or pushed, onto the stack by the
program and popped off the stack by the operating system

▪ Block and stack methods do not limit the number or length of
parameters being passed

49

Parameter Passing via Table

50

Types of System Calls

• Process control

▪ create process, terminate process

▪ end, abort

▪ load, execute

▪ get process attributes, set process attributes

▪ wait for time

▪ wait event, signal event

▪ allocate and free memory

▪ Dump memory if error

▪ Debugger for determining bugs, single step execution

▪ Locks for managing access to shared data between processes

51

Types of System Calls

• File management

▪ create file, delete file

▪ open, close file

▪ read, write, reposition

▪ get and set file attributes

• Device management

▪ request device, release device

▪ read, write, reposition

▪ get device attributes, set device attributes

▪ logically attach or detach devices

52

Types of System Calls (Cont.)

• Information maintenance

▪ get time or date, set time or date

▪ get system data, set system data

▪ get and set process, file, or device attributes

• Communications

▪ create, delete communication connection

▪ send, receive messages if message passing model to host

name or process name

 From client to server

▪ Shared-memory model create and gain access to memory

regions

▪ transfer status information

▪ attach and detach remote devices

53

Types of System Calls (Cont.)

• Protection

▪ Control access to resources

▪ Get and set permissions

▪ Allow and deny user access

54

Examples of Windows and Unix System Calls

55

Standard C Library Example

• C program invoking printf() library call, which calls write() system call

56

Example: MS-DOS

• Single-tasking

• Shell invoked when system

booted

• Simple method to run

program

▪ No process created

• Single memory space

• Loads program into memory,

overwriting all but the kernel

• Program exit -> shell

reloaded

At system startup running a program

57

Example: FreeBSD

• Unix variant

• Multitasking

• User login -> invoke user’s choice of

shell

• Shell executes fork() system call to create

process

▪ Executes exec() to load program into

process

▪ Shell waits for process to terminate or

continues with user commands

• Process exits with:

▪ code = 0 – no error

▪ code > 0 – error code

58

System Programs

• System programs provide a convenient environment for

program development and execution. They can be divided

into:

▪ File manipulation

▪ Status information

▪ Programming language support

▪ Program loading and execution

▪ Communications

▪ Background services

▪ Application programs

• Most users’ view of the operation system is defined by

system programs, not the actual system calls

59

System Programs

• Provide a convenient environment for program development and
execution

▪ Some of them are simply user interfaces to system calls; others
are considerably more complex

• File management - Create, delete, copy, rename, print, dump, list,
and generally manipulate files and directories

• Status information

▪ Some ask the system for info - date, time, amount of available
memory, disk space, number of users

▪ Others provide detailed performance, logging, and debugging
information

▪ Typically, these programs format and print the output to the
terminal or other output devices

60

System Programs (Cont.)

• File modification

▪ Text editors to create and modify files

▪ Special commands to search contents of files or perform
transformations of the text

• Programming-language support - Compilers, assemblers,
debuggers and interpreters sometimes provided

• Program loading and execution- Absolute loaders, relocatable
loaders, linkage editors, and overlay-loaders, debugging systems
for higher-level and machine language

• Communications - Provide the mechanism for creating virtual
connections among processes, users, and computer systems

▪ Allow users to send messages to one another’s screens,
browse web pages, send electronic-mail messages, log in
remotely, transfer files from one machine to another

61

System Programs (Cont.)

• Background Services

▪ Launch at boot time

 Some for system startup, then terminate

 Some from system boot to shutdown

▪ Provide facilities like disk checking, process scheduling, error
logging, printing

▪ Run in user context not kernel context

▪ Known as services, subsystems, daemons

• Application programs

▪ Don’t pertain to system

▪ Run by users

▪ Not typically considered part of OS

▪ Launched by command line, mouse click, finger poke

62

Linkers and Loaders

• Source code compiled into object files designed to be loaded into any

physical memory location – relocatable object file

• Linker combines these into single binary executable file

▪ Also brings in libraries

• Program resides on secondary storage as binary executable

• Must be brought into memory by loader to be executed

▪ Relocation assigns final addresses to program parts and adjusts code

and data in program to match those addresses

• Modern general purpose systems don’t link libraries into executables

▪ Rather, dynamically linked libraries (in Windows, DLLs) are loaded

as needed, shared by all that use the same version of that same library

(loaded once)

• Object, executable files have standard formats, so operating system knows

how to load and start them

63

The Role of the Linker and Loader

64

Why Applications are Operating System Specific

• Apps compiled on one system usually not executable on other

operating systems

• Each operating system provides its own unique system calls

▪ Own file formats, etc.

• Apps can be multi-operating system

▪ Written in interpreted language like Python, Ruby, and interpreter

available on multiple operating systems

▪ App written in language that includes a VM containing the running

app (like Java)

▪ Use standard language (like C), compile separately on each

operating system to run on each

• Application Binary Interface (ABI) is architecture equivalent of API,

defines how different components of binary code can interface for a

given operating system on a given architecture, CPU, etc.

65

Implementation

• Much variation

▪ Early OSes in assembly language

▪ Now C, C++

• Actually usually a mix of languages

▪ Lowest levels in assembly

▪ Main body in C

▪ Systems programs in C, C++, scripting languages like

PERL, Python, shell scripts

• More high-level language easier to port to other hardware

▪ But slower

• Emulation can allow an OS to run on non-native hardware

66

Operating System Structure

• General-purpose OS is very large program

• Various ways to structure ones

▪ Monolithic - UNIX

▪ Layered - an abstraction

▪ Microkernel - Mach

67

Monolithic Structure – Original UNIX

• UNIX – limited by hardware functionality, the original UNIX operating

system had limited structuring.

• The UNIX OS consists of two separable parts

▪ Systems programs

▪ The kernel

 Consists of everything below the system-call interface and

above the physical hardware

 Provides the file system, CPU scheduling, memory

management, and other operating-system functions; a large

number of functions for one level

68

Traditional UNIX System Structure

Beyond simple but not fully layered

69

Linux System Structure

Monolithic plus modular design

70

Layered Approach

• The operating system is divided

into a number of layers (levels),

each built on top of lower

layers. The bottom layer (layer

0), is the hardware; the highest

(layer N) is the user interface.

• With modularity, layers are

selected such that each uses

functions (operations) and

services of only lower-level

layers

71

Microkernel System Structure

• Moves as much from the kernel into user space

• Mach example of microkernel

▪ Mac OS X kernel (Darwin) partly based on Mach

• Communication takes place between user modules using

message passing

• Benefits:

▪ Easier to extend a microkernel

▪ Easier to port the operating system to new architectures

▪ More reliable (less code is running in kernel mode)

▪ More secure

• Detriments:

▪ Performance overhead of user space to kernel space

communication

72

Microkernel System Structure

Application

Program

File

System

Device

Driver

Interprocess

Communication

memory

managment

CPU

scheduling

messagesmessages

microkernel

hardware

user

mode

kernel

mode

73

Modules

• Many modern operating systems implement loadable kernel

modules (LKMs)

▪ Uses object-oriented approach

▪ Each core component is separate

▪ Each talks to the others over known interfaces

▪ Each is loadable as needed within the kernel

• Overall, similar to layers but with more flexible

▪ Linux, Solaris, etc.

74

Solaris Modular Approach

75

Hybrid Systems

• Most modern operating systems are not one pure model

▪ Hybrid combines multiple approaches to address performance,

security, usability needs

▪ Linux and Solaris kernels in kernel address space, so monolithic,

plus modular for dynamic loading of functionality

▪ Windows mostly monolithic, plus microkernel

• Apple Mac OS X hybrid, layered, Aqua UI plus Cocoa programming

environment

▪ Below is kernel consisting of Mach microkernel and BSD Unix

parts, plus I/O kit and dynamically loadable modules (called

kernel extensions)

76

Darwin

77

iOS

• Apple mobile OS for iPhone, iPad

▪ Structured on Mac OS X, added functionality

▪ Does not run OS X applications natively

 Also runs on different CPU architecture

(ARM vs. Intel)

▪ Cocoa Touch Objective-C API for

developing apps

▪ Media services layer for graphics, audio,

video

▪ Core services provides cloud computing,

databases

▪ Core operating system, based on Mac OS X

kernel

78

Android

• Developed by Open Handset Alliance (mostly Google)

▪ Open Source

• Similar stack to IOS

• Based on Linux kernel but modified

▪ Provides process, memory, device-driver management

▪ Adds power management

• Runtime environment includes core set of libraries and Dalvik

virtual machine

▪ Apps developed in Java plus Android API

 Java class files compiled to Java bytecode then translated

to executable than runs in Dalvik VM

• Libraries include frameworks for web browser (webkit), database

(SQLite), multimedia, smaller libc

79

Android Architecture

80

System Boot

• When power initialized on system, execution starts at a fixed memory

location

• Operating system must be made available to hardware so hardware

can start it

▪ Small piece of code – bootstrap loader, BIOS, stored in ROM or

EEPROM locates the kernel, loads it into memory, and starts it

▪ Sometimes two-step process where boot block at fixed location

loaded by ROM code, which loads bootstrap loader from disk

▪ Modern systems replace BIOS with Unified Extensible

Firmware Interface (UEFI)

• Common bootstrap loader, GRUB, allows selection of kernel from

multiple disks, versions, kernel options

• Kernel loads and system is then running

• Boot loaders frequently allow various boot states, such as single user

mode

81

Disk Organization

• Il disco può essere suddiviso in partizioni ognuna contenente un

proprio file system

• Il partizionamento del disco avviene mediante la formattazione di alto

livello

MBR

Tabella delle

Partizioni
Partizioni

Disco

Blocco di

avvio

Super

blocco

Gestione

blocchi liberi
I-node

Directory

Radice

File e

Directory

82

Disk Organization

• MBR (Master Boot Record)

▪ Contiene programma di avvio

▪ La fine del MBR contiene la tabella delle partizioni

• Tabella delle partizioni

▪ Contiene punto di inizio e fine di ogni partizione

▪ Una sola partizione è marcata come attiva

▪ E’ la partizione da cui verrà caricato il SO

MBR

Tabella delle

Partizioni
Partizioni

Disco

83

Disk Organization

• Blocco di avvio
▪ Contiene semplice codice eseguito in fase di bootstrap e serve a

caricare il kernel

▪ Ogni partizione contiene il Blocco di Avvio anche se non contiene il SO
(potrebbe contenerne uno)

• Superblocco
▪ Contiene informazioni sul file system

– Numero magico che identifica il FS

– Numero di blocchi del FS

– …

• Gestione per lo spazio libero
▪ Strutture dati per la gestione dei blocchi liberi

• I-node
▪ Nei SO che utilizzano gli i-node questi sono raggruppati in una parte del

disco

• Directory radice

• File e directory

84

Two-Step Bootstrap

• Esecuzione del programma di avvio in ROM

▪ Caricamento del MBR

• Esecuzione del codice di avvio contenuto nel MBR

▪ Localizza la partizione attiva dalla tabella delle partizioni

▪ Legge il primo blocco (blocco di avvio) e lo esegue

• Esecuzione del codice nel Blocco di Avvio

▪ Localizza il kernel nella partizione attiva

▪ Carica in memoria il kernel

▪ Cede il controllo al kernel

