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What is TCP?

Transport Layer protocol for reliable
communication.

Provides logical communication between
processes.
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Why is TCP important?



Why is TCP important?

More than 65% of the entire Internet traffic: 62.4 exobytes
(62,400,000,000,000,000,000 B).

All on TCP!



A bit of history

1974 – Vint Cerf & Bob Kahn 
publish the first paper
introducing TCP/IP concepts

1981 – TCP becames IETF 
standard RFC 793 / STD 7

1981-2015 – Many other RFCs
with optimizations (1122, 
1323, 2018, 2581)



Transport services and protocols

• provide logical communication between 
app processes running on different hosts

• transport protocols run in end systems 
 send side: breaks app messages into 

segments, passes to  network layer

 rcv side: reassembles segments into 
messages, passes to app layer

• more than one transport protocol 
available to apps
 Internet: TCP and UDP
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Internet transport-layer protocols

 TCP: reliable, in-order delivery
 congestion control 

 flow control

 connection setup

 UDP: unreliable, unordered 
delivery
 no-frills extension of “best-effort” IP

 services not available: 
 delay guarantees

 bandwidth guarantees
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TCP features

 Multiplexing/demultiplexing

 Reliable communication

 Ordered delivery

 Connection oriented

 Full-duplex communication

 Flow control

 Congestion control

RFCs: 793, 1122, 1323, 2018, 2581



Multiplexing/demultiplexing



Multiplexing/demultiplexing
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Physical

Socket
Interface between Application Layer

and Transport Layer



Multiplexing/demultiplexing
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TCP payload (App data)TCP header

TCP segment



Multiplexing/demultiplexing
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…11101001100010110101101010…

TCP payload (App data)TCP header

IP payloadIP header

IP datagram



Multiplexing/demultiplexing

process

socket

transport

application

physical

link

network

P2P1

transport

application

physical

link

network

P4

transport

application

physical

link

network

P3



Multiplexing/demultiplexing

process

socket

handle data from multiple
sockets, add transport header 
(later used for demultiplexing)

multiplexing at sender:
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Multiplexing/demultiplexing

process

socket

use header info to deliver
received segments to correct 
socket

demultiplexing at receiver:handle data from multiple
sockets, add transport header 
(later used for demultiplexing)

multiplexing at sender:
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• host receives IP datagrams
 each datagram has source IP 

address, destination IP address

 each datagram carries one 
transport-layer segment

 each segment has source, 
destination port number 

• host uses IP addresses & port 
numbers to direct segment to 
appropriate socket

source port # dest port #

32 bits

application
data 

(payload)

other header fields

TCP segment format

How demultiplexing works



• TCP socket identified by 4-tuple: 
 source IP address

 source port number

 dest IP address

 dest port number

• Demux: receiver uses all four values 
to direct segment to appropriate 
socket

TCP demux



TCP demux example

transport

application

physical

link
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transport

application
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application

physical

link
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source IP, port: A, 9157
dest IP, port: B, 80

host: IP 
address A

host: IP 
address C

network

P6P5
P3

source IP, port: C, 5775
dest IP, port: B, 80

source IP, port: C, 9157
dest IP, port: B, 80

three segments, all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets

server: IP 
address B
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source IP, port: A, 9157
dest IP, port: B, 80

host: IP 
address A

host: IP 
address C

server: IP 
address B

network

P3

source IP, port: C, 5775
dest IP, port: B, 80

source IP, port: C, 9157
dest IP, port: B, 80

P4

TCP demux example



Reliable communication



Reliable communication

PROBLEM: unreliable channel
Packet corruption

Losses
Unordered delivery

How to establish a reliable
communication?



Reliable communication

Sender Receiver

Q: How does the sender know if
the message has been received?

pkt



Reliable communication

Sender Receiver

Q: How does the sender know if
the message has been received?

A: Feedback from receiver, ACK

pkt

ack



Reliable communication

Sender Receiver

pkt

ackstop and wait
sender sends one packet, 
then waits for receiver 
response



Reliable communication

Sender Receiver

Q: What if the message is lost?
loss
X

pkt



Reliable communication

Sender Receiver

Q: What if the message is lost?

A: Timeout and retransmission

loss
X

timeout

pkt

pkt



Reliable communication

Sender Receiver

Q: What if ACK is lost?

pkt

ack

loss
X



Reliable communication

Sender Receiver

Q: What if ACK is lost?

PROBLEM: how does the 
receiver know that it is a 

duplicate?

pkt

ack

loss
X

timeout pkt



Reliable communication

Sender Receiver

Q: What if ACK is lost?

PROBLEM: how does the 
receiver know that it is a 

duplicate?

SOLUTION: Sequence number

pkt0

ack0

loss
X

timeout pkt0

discarded



sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

pkt1

ack1

ack0

ack0

(a) no loss

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

ack1

ack0

ack0

(b) packet loss

pkt1
X

loss

pkt1
timeout

resend pkt1

Stop-and-wait recap



rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

ack1

ack0

ack0

(c) ACK loss

ack1
X

loss

pkt1
timeout

resend pkt1

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

send ack0
rcv ack0

send pkt1

send pkt0

rcv pkt0
pkt0

ack0

(d) premature timeout/ delayed ACK

pkt1
timeout

resend pkt1

ack1

send ack1

rcv ack0

rcv ack1
ack1

send pkt0
rcv ack1 pkt0

rcv pkt0
send ack0ack0

Stop-and-wait recap



Example: 1 Gbps link, 15 ms prop. 
delay, 8000 bit packet:

If RTT=30 ms, 1kB pkt every 30 ms: 
33kB/s throughput

Stop-and- wait utilization

t = 0

sender receiver

RTT

t = L / R

send ACK

t = RTT + L / R 

U 
sender = 

.008 

30.008 
= 0.00027  

L / R 

RTT + L / R 
= 

Utilization – fraction of time sender busy 
sending



Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT 

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next 
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases
utilization by a factor of 3!

 

U 
sender = 

.024 

30.008 
= 0.00081  

3L / R 

RTT + L / R 
= 



Go-Back-N
Sliding window of up to N, consecutive unacked pkts allowed

• Cumulative ACK ACK(n): ACKs all pkts up to, including seq # n 
 Sender may receive duplicate ACKs – ignored

• timer for oldest in-flight pkt

• timeout(n): retransmit packet n and all higher seq # pkts in 
window

• out-of-order pkts: 

 discard (don’t buffer): no receiver buffering!

 re-ACK pkt with highest in-order seq #



send  pkt0
send  pkt1
send  pkt2
send  pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, discard, 
(re)send ack1rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send  pkt2
send  pkt3
send  pkt4
send  pkt5

Xloss

receive pkt4, discard, 
(re)send ack1

receive pkt5, discard, 
(re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

0 1 2 3 4 5 6 7 8 

sender window (N=4)

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

0 1 2 3 4 5 6 7 8 

Go-Back-N example



TCP reliable communication

 TCP obtains reliable 
communication on top of 
IP’s unreliable service
 pipelined segments

 cumulative acks

 single retransmission 
timer

 retransmissions  
triggered by:
 timeout events

 duplicate acks

let’s initially consider 
simplified TCP sender:
 ignore duplicate acks

 ignore flow control, 
congestion control



TCP seq. numbers, ACKs

sequence numbers:

 byte stream “number” of first byte 
in segment’s data

acknowledgements:

 seq # of next byte expected from 
other side

 cumulative ACK

Q: how receiver handles out-of-order 
segments

 A: TCP spec doesn’t say, - up to 
implementor

sent 
ACKed

sent, not-
yet ACKed
(“in-
flight”)

usable
but not 
yet sent

not 
usable

window size
N

sender sequence number space 

outgoing segment from sender

incoming segment to sender



TCP sender

data rcvd from app:

• create segment with 
seq #

• seq # is byte-stream 
number of first data 
byte in  segment

• start timer if not 
already running 
 think of timer as for 

oldest unacked
segment

timeout:

• retransmit segment 
that caused timeout

• restart timer

ack rcvd:

• if ack acknowledges 
previously unacked
segments
 update what is known 

to be ACKed
 start timer if there are  

still unacked segments



TCP seq. numbers, ACKs

User
types
‘C’

host ACKs
receipt 

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80



TCP: retransmission scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

Xti
m

e
o
u
t

ACK=100

premature timeout

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92,  8
bytes of data

ti
m

e
o
u
t

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92



TCP: retransmission scenarios

X

cumulative ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=120,  15 bytes of data

ti
m

e
o
u
t

Seq=100, 20 bytes of data

ACK=120



TCP ACK generation [RFC 1122, RFC 2581]

Event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other 
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that 
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative 
ACK, ACKing both in-order segments 

immediately send duplicate ACK,
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap



TCP fast retransmit

if sender receives 3 
ACKs for same data

(“triple duplicate ACKs”),

resend unacked 
segment with smallest 
seq #
 likely that unacked 

segment lost, so don’t 
wait for timeout

TCP fast retransmit

X

fast retransmit after sender 
receipt of triple duplicate ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

ti
m

e
o
u
t

ACK=100

ACK=100

ACK=100

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data



TCP round trip time, timeout

Q: how to set TCP timeout 
value?

• longer than RTT
 but RTT varies

• too short: premature timeout, 
unnecessary retransmissions

• too long: slow reaction to 
segment loss

Q: how to estimate RTT?

 SampleRTT: measured time from 
segment transmission until ACK receipt

 ignore retransmissions

 SampleRTT will vary, want estimated 
RTT “smoother”

 average several recent
measurements, not just current 
SampleRTT



RTT: gaia.cs.umass.edu to fantasia.eurecom.fr
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EstimatedRTT = (1 - ) * EstimatedRTT +  * SampleRTT

• exponential weighted moving average
• influence of past sample decreases exponentially fast
• typical value:  = 0.125

TCP round trip time, timeout
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RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT

EstimatedRTT
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TCP round trip time, timeout

 timeout interval: EstimatedRTT plus “safety margin”
 large variation in EstimatedRTT -> larger safety margin

 estimate SampleRTT deviation from EstimatedRTT: 

DevRTT = (1 - ) * DevRTT +  * |SampleRTT - EstimatedRTT|

(typically,  = 0.25)

TimeoutInterval = EstimatedRTT + 4 * DevRTT

estimated RTT “safety margin”



Flow control



TCP flow control

application

process

TCP socket
receiver buffers

TCP
code

IP
code

application

OS

receiver protocol stack

application may 
remove data from 

TCP socket buffers …. 

… slower than TCP 
receiver is delivering
(sender is sending)

from sender

receiver controls sender, so 

sender won’t overflow 

receiver’s buffer by transmitting 

too much, too fast

flow control



TCP flow control

 receiver “advertises” free buffer space 
by including rwnd value in TCP header 
of receiver-to-sender segments

 RcvBuffer size set via socket options 
(typical default is 4096 bytes)

 many operating systems autoadjust 
RcvBuffer

 sender limits amount of unacked (“in-
flight”) data to receiver’s rwnd value 

 guarantees receive buffer will not 
overflow

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

receiver-side buffering



TCP segment structure



source port # dest port #

32 bits

application

data 

(variable length)

sequence number

acknowledgement number

receive window

Urg data pointerchecksum

FSRPAU
head

len

not

used

options (variable length)

URG: urgent data 

(generally not used)

ACK: ACK #

valid

PSH: push data now

(generally not used)

RST, SYN, FIN:

connection estab

(setup, teardown

commands)

# bytes 

rcvr willing

to accept

counting

by bytes 

of data

(not segments!)

Internet

checksum

TCP segment structure



Connection management



Connection management
before exchanging data, sender/receiver “handshake”:

 agree to establish connection (each knowing the other willing to 
establish connection)

 agree on connection parameters

connection state: ESTAB
connection variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server, client 

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
server-to-client

rcvBuffer size
at server, client 

application

network

Socket clientSocket =   

newSocket("hostname","port 

number");

Socket connectionSocket = 

welcomeSocket.accept();



Q: will 2-way handshake always 
work in unreliable network?

 variable delays

 retransmitted messages (e.g. 
req_conn(x)) due to message loss

 message reordering

 can’t “see” other side

choose x
req_conn(x)

ESTAB

ESTAB
acc_conn(x)

2-way handshake



retransmit
req_conn(x)

ESTAB

req_conn(x)

half open connection!
(no client!)

client 
terminates

server
forgets x

connection 
x completes

retransmit
req_conn(x)

ESTAB

req_conn(x)

data(x+1)

retransmit
data(x+1)

accept
data(x+1)

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x)

client 
terminates

ESTAB

choose x
req_conn(x)

ESTAB

acc_conn(x)

data(x+1) accept
data(x+1)

connection 
x completes server

forgets x

2-way handshake failure scenarios



SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x) 
indicates server is live;
send ACK for SYNACK;

this segment may contain 
client-to-server data

received ACK(y) 
indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state

LISTEN

server state

LISTEN

TCP 3-way handshake



• client, server each close their side of connection
 send TCP segment with FIN bit = 1

• respond to received FIN with ACK
 on receiving FIN, ACK can be combined with own FIN

• simultaneous FIN exchanges can be handled

TCP closing connection



TCP closing connection

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1

wait for server
close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait 
for 2*max 

segment lifetime

CLOSED

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state

ESTABESTAB



Congestion control



 informally: “too many sources 
sending too much data too fast 
for network to handle”

 different from flow control!

 manifestations:

 lost packets (buffer 
overflow at routers)

 long delays (queueing in 
router buffers)

 a top-10 problem!

Congestion

Host A

Host B

finite shared output 

link buffers



 informally: “too many sources 
sending too much data too fast 
for network to handle”

 different from flow control!

 manifestations:

 lost packets (buffer 
overflow at routers)

 long delays (queueing in 
router buffers)

 a top-10 problem!

Congestion

Host A

Host B

finite shared output 

link buffers



Approaches to congestion control

end-end congestion 
control:

• no explicit feedback 
from network

• congestion inferred 
from end-system 
observed loss, delay

• approach taken by TCP

network-assisted 
congestion control:

• routers provide feedback 
to end systems

 single bit indicating 
congestion (SNA, 
DECbit, TCP/IP ECN, 
ATM)

explicit rate for sender 
to send at



• New state variable cwnd

• window = min(cwnd, rwnd)

• cwnd is dynamic, function of 
perceived network congestion

last byte
ACKed sent, not-

yet ACKed
(“in-flight”)

last byte 
sent

window

LastByteSent - LastByteAcked < window

sender sequence number space 

TCP congestion control



additive increase: increase  cwnd by 
1 MSS every RTT until loss detected

multiplicative decrease: cut cwnd in 
half after loss c

w
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AIMD saw tooth behavior: 

probing for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time

Additive increase, multiplicative decrease



TCP Slow Start 

• when connection begins, increase 
rate exponentially until first loss 
event:
 initially cwnd = 1 MSS

 double cwnd every RTT

 done by incrementing cwnd for every 
ACK received

• summary: initial rate is slow but 
ramps up exponentially fast

Host A

R
T

T

Host B

time



• loss indicated by timeout:
 cwnd set to 1 MSS; 
 window then grows exponentially (as in slow start) to 

threshold, then grows linearly

• loss indicated by 3 duplicate ACKs: TCP RENO
 dup ACKs indicate network capable of  delivering some 

segments 
 cwnd is cut in half window then grows linearly

• TCP Tahoe always sets cwnd to 1 (timeout or 3 
duplicate acks)

Reacting to loss



Switching from slow start to CA

Q: when should the exponential 
increase switch to linear? 

A: when cwnd gets to 1/2 of its 
value before timeout.

Implementation:

• variable ssthresh

• on loss event, ssthresh is set to 
1/2 of cwnd just before loss event


