
Message Passing
Model

Alessio Vecchio
alessio.vecchio@unipi.it

Dip. di Ingegneria dell’Informazione
Università di Pisa

Based  on original slides by Silberschatz, Galvin, and Gagne
Operating System Concepts, IX edition



2

Overview

■ Message Passing Model
■ Addressing
■ Synchronization
■ Example of IPC systems



3

Objectives

■ To introduce an alternative solution (to shared memory) for process 
cooperation

■ To show pros and cons of message passing vs. shared memory
■ To show some examples of message-based communication systems



4

Inter-Process Communication (IPC)

■ Message system – processes communicate with each other without 
resorting to shared variables.

■ IPC facility provides two operations:
● send(message) – fixed or variable message size
● receive(message)

■ If P and Q wish to communicate, they need to:
● establish a communication link between them
● exchange messages via send/receive

■ The communication link is provided by the OS



5

Implementation Issues

Physical implementation

■ Single-processor system
● Shared memory

■ Multi-processor systems
● Hardware bus

■ Distributed systems
● Networking System + Communication networks



6

Implementation Issues

Logical properties

■ Can a link be associated with more than two processes?
■ How many links can there be between every pair of communicating 

processes?
■ What is the capacity of a link?
■ Is the size of a message that the link can accommodate fixed or variable?
■ Is a link unidirectional or bi-directional?



7

Implementation Issues

Other Aspects

■ Addressing
■ Synchronization
■ Buffering



8

Direct Addressing

■ Processes must name each other explicitly.
■ Symmetric scheme

● send (D, message) – send a message to process D
● receive(S, message) – receive a message from process S

■ Logical properties
● A communication link exits between exactly two process
● Links are established automatically
● Links are usually FIFO



9

Direct Addressing

■ Asymmetric scheme
● send (D, message) – send a message to process D
● receive(proc, message) - receive a message from any process proc



10

Indirect Addressing

■ Messages are sent/received through mailboxes
● shared data structures where messages are queued temporarily. 

Sometimes referred to as ports
■ Processes can communicate only if they share a mailbox

● Each mailbox has a unique id

■ Primitives are defined as:
● send(mb, message) – send a message to mailbox A
● receive(mb, message) – receive a message from mailbox mb



11

Indirect Communication

■ Operations
● create a new mailbox
● send and receive messages through mailbox
● destroy a mailbox

■ Properties of communication link
● Link established only if processes share a common mailbox
● A link may be associated with many processes
● Each pair of processes may share several communication links
● Link may be unidirectional or bi-directional

■ Relationships
● One-to-one (private communication)
● Many–to-one (client-server communication)
● Many-to-many (multicast communication)



12

Synchronization

■ Send operations may be
● Synchronous
● Asynchronous

■ Receive operations may be
● Blocking
● Non-blocking



13

Synchronization

■ Blocking send, blocking receive
● Rendez-vous between sender and receiver

■ Non-blocking send, blocking receive
● Most useful combination (used by servers)
● Variations: receive with timeout, select, proactive test

■ Non-blocking send, Non-blocking receive
● Neither party is required to wait



14

Buffering

■ Queue of messages attached to the link; implemented in one of three ways.
● Zero capacity – 0 messages

Sender must wait for receiver  (in fact, this introduces a rendezvous).
● Bounded capacity – finite length of n messages

Sender must wait if the link full.
● Unbounded capacity – infinite length 

Sender never waits.



15

Process Producer {
while (TRUE) {

// message in nextProduced
send(mb, nextProduced);

}
}

Process Consumer {
while (TRUE) {

receive(mb, msg);
// consume message

}
}

Mailbox mb;

Producer-Consumer: Solution (1)



16

Process Producer {
while (TRUE) {

// message in nextProduced
receive(mb2, ack);
send(mb1, nextProduced);

}
}

Process Consumer {
while (TRUE) {

send(mb2, READY);
receive(mb1, msg);
// consume message

}
}

Mailbox mb1, mb2;

Producer-Consumer: Solution (2)



17

Client-Server Communication

ServerClient

Request

Response


