
Shared Memory
Model

Alessio Vecchio
alessio.vecchio@unipi.it

Dip. di Ingegneria dell’Informazione
Università di Pisa

Based on original slides by Silberschatz, Galvin, and Gagne
Operating System Concepts, IX edition

2

Overview

■ The Critical-Section Problem
■ Software Solutions
■ Synchronization Hardware
■ Semaphores
■ Monitors
■ Synchronization Examples

3

Overview

■ The Critical-Section Problem
■ Software Solutions
■ Synchronization Hardware
■ Semaphores
■ Monitors
■ Synchronization Examples

4

Objectives

■ To introduce the critical-section problem, whose solutions can be
used to ensure the consistency of shared data

■ To present both software and hardware solutions of the critical-
section problem

5

Producer-Consumer Problem

■ The Producer process produces data that must processed by the
Consumer process

■ The inter-process communication occurs through a shared buffer
(shared memory)

■ Bounded Buffer Size
● The Producer process cannot insert a new item if the buffer is full
● The Consumer process cannot extract an item if the buffer is

empty

6

Producer-Consumer Problem

■ Shared data

#define BUFFER_SIZE 10
typedef struct {

. . .
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;
int counter = 0;

7

Producer-Consumer Problem
■ Producer process

item nextProduced;

while (1) {
while (counter == BUFFER_SIZE); /* do nothing */
buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
counter++;

}

8

Producer-Consumer Problem
■ Consumer process

item nextConsumed;

while (1) {
while (counter == 0); /* do nothing */
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
counter--;

}

9

Producer-Consumer Problem

■ The statements

counter++;
counter--;

must be performed atomically.

■ Atomic operation means an operation that completes in its entirety
without interruption.

10

Producer-Consumer Problem

■ The statement “counter++” may be implemented in machine
language as:

register1 = counter
register1 = register1 – 1
counter = register1

■ The statement “counter—” may be implemented as:

register2 = counter
register2 = register2 – 1
counter = register2

11

Producer-Consumer Problem

■ If both the producer and consumer attempt to update the buffer
concurrently, the assembly language statements may get
interleaved.

■ Interleaving depends upon how the producer and consumer
processes are scheduled.

12

Race Condition

■ Assume counter is initially 5. One interleaving of
statements is:

producer: register1 = counter (register1 = 5)
producer: register1 = register1 + 1 (register1 = 6)

consumer: register2 = counter (register2 = 5)
consumer: register2 = register2 – 1 (register2 = 4)

producer: counter = register1 (counter = 6)
consumer: counter = register2 (counter = 4)

■ The value of count may be either 4 or 6, where the
correct result should be 5.

13

Race Condition

■ Race condition
● The situation where several processes access and manipulate

shared data concurrently.
● The final value of the shared data depends upon how

instructions are interleaved.

■ Show example about balance and num.Ops.

■ To prevent race conditions, concurrent processes must be
synchronized.

14

Critical Section Problem

■ Consider system of n processes {p0, p1, … pn-1}
■ Each process has critical section segment of code

● Process may be changing common variables, updating
table, writing file, etc

● When one process in critical section, no other may be in its
critical section

■ Critical section problem is to design protocol to solve this
■ Each process must ask permission to enter critical section in

entry section, may follow critical section with exit section,
then remainder section

15

Solution to Critical-Section Problem

■ 1 - Mutual Exclusion
● If process Pi is executing in its critical section, then no other processes

can be executing in their critical sections.
■ 2 - Progress

● If no process is executing in its critical section and there exist some
processes that wish to enter their critical section, then the selection of
the processes that will enter the critical section next cannot be
postponed indefinitely.

■ 3 - Bounded Waiting.
● A bound must exist on the number of times that other processes are

allowed to enter their critical sections after a process has made a
request to enter its critical section and before that request is granted.

■ Assume that each process executes at a nonzero speed
■ No assumption concerning relative speed of the n processes.

16

General Process Structure

■ General structure of process Pi

do {
entry section
critical section
exit section
reminder section

} while (TRUE)

17

Possible Solutions

■ Software approaches
■ Hardware solutions

● Interrupt disabling
● Special machine instructions

■ Operating System Support
● Semaphores

■ Programming language Support
● Monitor
● …

18

Overview

■ The Critical-Section Problem
■ Software Solutions
■ Synchronization Hardware
■ Semaphores
■ Monitors
■ Synchronization Examples

19

A Software Solution

Boolean lock=FALSE;
Process Pi {

do {
while (lock); // do nothing
lock=TRUE;
critical section
lock=FALSE;
remainder section

} while (TRUE);
}

Does it work?

20

Peterson’s Solution

■ Two process solution
■ Assume that the LOAD and STORE instructions are atomic
■ The two processes share two variables:

● int turn;
● Boolean flag[2];

■ The variable turn indicates whose turn it is to enter the critical
section.

■ The flag array is used to indicate if a process is ready to enter the
critical section
● flag[i] = true implies that process Pi is ready!

21

Algorithm for Process Pi

do {
flag[i] = TRUE;
turn = j;
while (flag[j] && turn == j);
critical section
flag[i] = FALSE;
remainder section

} while (TRUE);
}

22

Solution to Critical-section Problem Using Locks

do {
acquire lock
critical section
release lock
remainder section

} while (TRUE);

23

Overview

■ The Critical-Section Problem
■ Software Solutions
■ Synchronization Hardware
■ Semaphores
■ Monitors
■ Synchronization Examples

24

Synchronization Hardware

■ Many systems provide hardware support for implementing the
critical section code.

■ All solutions below based on idea of locking
● Protecting critical regions via locks

■ Uniprocessors – could disable interrupts
● Currently running code would execute without preemption
● Generally too inefficient on multiprocessor systems

4 Operating systems using this not broadly scalable
■ Modern machines provide special atomic hardware instructions

4 Atomic = non-interruptible
● Either test memory word and set value
● Or swap contents of two memory words

25

Interrupt Disabling

do {
disable interrupt;
critical section
enable interrupt;
remainder section

} while (1);

26

Previous Solution

do {
while (lock); // do nothing
lock=TRUE;
critical section
lock=FALSE;
remainder section

} while (1);

The solution does not guaranteed the mutual exclusion
because the test and set on lock are not atomic

27

Test-And-Set Instruction

■ Definition:

boolean TestAndSet (boolean *target) {
boolean rv = *target;
*target = TRUE;
return rv;

}

28

Solution using Test-And-Set

boolean lock=FALSE;

do {
while (TestAndSet (&lock)); // do nothing
critical section
lock = FALSE;
remainder section

} while (TRUE);

29

Swap Instruction

void Swap (boolean *a, boolean *b) {
boolean temp = *a;
*a = *b;
*b = temp:

}

30

Solution using Swap

Shared boolean variable lock initialized to FALSE
Each process has a local boolean variable key

do {
key = TRUE;
while (key == TRUE) Swap (&lock, &key);
critical section
lock = FALSE;
remainder section

} while (TRUE);

This solution guarantees mutual exclusion but not bounded
waiting

31

Bounded-waiting Mutual Exclusion with TestAndSet()

do {
waiting[i] = TRUE;
key = TRUE;
while (waiting[i] && key) key = TestAndSet(&lock);
waiting[i] = FALSE;
// critical section
j = (i + 1) % n;
while ((j != i) && !waiting[j]) j = (j + 1) % n;
if (j == i) lock = FALSE;
else waiting[j] = FALSE;
// remainder section

} while (TRUE);

32

Overview

■ The Critical-Section Problem
■ Software Solutions
■ Synchronization Hardware
■ Semaphores
■ Monitors
■ Synchronization Examples

33

Semaphore

■ Synchronization tool that does not require busy waiting
■ Semaphore S – integer variable
■ Can only be accessed via two indivisible (atomic) operations

● wait() and signal()
● Originally called P() and V()

34

Semaphore

wait (S) {
while (S <= 0); // busy wait
S--;

}

signal (S) {
S++;

}
wait() and signal() must be atomic

35

Semaphore as General Synchronization
Tool

■ Counting semaphore
● integer value can range over an unrestricted domain

■ Binary semaphore
● integer value can range only between 0 and 1; can be simpler to

implement
● Also known as mutex locks

■ Can implement a counting semaphore S as a binary semaphore

36

Semaphore as Mutex Tool

■ Shared data:
semaphore mutex=1;

■ Process Pi:

do {
 wait (mutex);
 // Critical Section
 signal (mutex);
 // Remainder section
} while (TRUE);

37

Semaphore Implementation

■ Must guarantee that no two processes can execute wait() and
signal() on the same semaphore at the same time

■ Could have busy waiting (spinlock)
● Busy waiting wastes CPU cycles
● But avoids context switches
● May be useful when the critical section is short and/or rarely

occupied
■ However applications may spend lots of time in critical sections and

therefore, generally, this is not a good solution.

38

Semaphore Implementation

■ Define a semaphore as a record
typedef struct {

int value;
struct process *L;

} semaphore;

■ Assume two simple operations:
● block() suspends the process that invokes it.
● wakeup(P) resumes the execution of a blocked process P.

39

Implementation
wait (semaphore *S) {

S->value--;
if (S->value < 0) {

add this process to S->list;
block();

}
}

signal (semaphore *S) {
S->value++;
if (S->value <= 0) {

remove a process P from S->list;
wakeup(P);

}
}

40

Semaphore as a Synchronization Tool
■ Execute B in Pj only after A executed in Pi

■ Use semaphore flag initialized to 0
■ Code:

Pi Pj
! !

A wait(flag)
signal(flag) B

41

Deadlock and Starvation
■ Deadlock
two or more processes are waiting indefinitely for an event that can be
caused by only one of the waiting processes.
Let S and Q be two semaphores initialized to 1

P0 P1
wait(S); wait(Q);
wait(Q); wait(S);
! !

signal(S); signal(Q);
signal(Q); signal(S);

■ Starvation – indefinite blocking.
A process may never be removed from the semaphore queue in which
it is suspended.

42

Classical Problems of Synchronization

■ Bounded-Buffer Problem
■ Readers and Writers Problem
■ Dining-Philosophers Problem

43

Bounded-Buffer Problem

■ N buffers, each can hold one item
■ Semaphore mutex initialized to the value 1
■ Semaphore full initialized to the value 0
■ Semaphore empty initialized to the value N.

44

Bounded-Buffer Problem

Producer Process

do {
…
<produce an item in

nextp>
…
wait(empty);
wait(mutex);
…
<add nextp to buffer>
…
signal(mutex);
signal(full);

} while (1);

Consumer Process

do {
wait(full)
wait(mutex);
…
<remove item from buffer to

nextc>
…
signal(mutex);
signal(empty);
…
<consume item in nextc>
…

} while (1);

45

Readers-Writers Problem

■ A data set is shared among a number of concurrent processes
● Readers – only read the data set; they do not perform any updates
● Writers – can both read and write

■ Problem
● Allow multiple readers to read at the same time.
● Only one single writer can access the shared data at the same time

■ Variants
● No new reader must wait when a writer is waiting for data access
● No new reader can start reading when a writer is waiting for data

access

46

Readers-Writers Problem

■ Shared Data
● Data set
● Integer readcount initialized to 0
● Semaphore mutex initialized to 1

4Mutual exclusion on readcount
● Semaphore wrt initialized to 1

4Mutual exclusion on the data set by writers

47

Readers-Writers Problem

■ The structure of a writer process

do {
wait (wrt) ;
// writing is performed
signal (wrt) ;

} while (TRUE);

48

Readers-Writers Problem

■ The structure of a reader process

do {
wait (mutex) ;
readcount ++ ;
if (readcount == 1) wait (wrt) ;
signal (mutex) ;
// reading is performed
wait (mutex) ;
readcount - - ;
if (readcount == 0) signal (wrt) ;
signal (mutex) ;

} while (TRUE);

49

Dining-Philosophers Problem

■ Shared data
● Bowl of rice (data set)
● Semaphore chopstick [5] initialized to 1

50

Dining-Philosophers Problem

■ The structure of Philosopher i:

do {
 wait (chopstick[i]);
 wait (chopStick[(i + 1) % 5]);
 // eat
 signal (chopstick[i]);
 signal (chopstick[(i + 1) % 5]);
 // think
} while (TRUE);

51

Dining-Philosophers Problem

■ Deadlock
● A deadlock occurs if all philosophers start eating simultaneously

■ Possible solutions to avoid deadlocks
● Only 4 philosophers can sit around the table
● A philosopher can take his/her chopsticks only if they both are

free
● An odd philosopher takes the chopstick on its left first, and then

the one on its right; an even philosopher takes the opposite
approach.

■ Starvation
● Any solution must avoid that a philosopher may starve

52

Problems with Semaphores

■ Incorrect use of semaphore operations:

● wait (mutex) … wait (mutex)

● signal (mutex) …. wait (mutex)

● Omitting of wait (mutex) or signal (mutex) (or both)

53

Overview

■ The Critical-Section Problem
■ Software Solutions
■ Synchronization Hardware
■ Semaphores
■ Monitors
■ Synchronization Examples

54

Monitor

■ A high-level abstraction that provides a convenient and
effective mechanism for process synchronization

55

Monitor
■ A high-level abstraction that provides a convenient and effective

mechanism for process synchronization
■ Only one process may be active within the monitor at a time

monitor monitor-name {
 // shared variable declarations
 procedure P1 (…) { …. }
 …
 procedure Pn (…) {……}

 Initialization code (….) {
 …
 }
}

56

Basic Monitor

57

Monitor with Condition Variables

58

Condition Variables

■ condition x, y;

■ Two operations on a condition variable:
● x.wait() – a process that invokes the operation is (always)

suspended.
● x.signal() – resumes one of processes (if any) that

invoked x.wait().

■ Variants (P executes x.signal() and Q was blocked on x)
● Signal and wait: P waits for Q leaving the monitor – or blocking on

another condition variable – before proceedings on
● Signal and proceed: Q waits for P leaving the monitor – or blocking on

another condition variable – before proceedings on
● Signal and Leave: P executes signal and leaves the monitor

(Concurrent Pascal)

59

Solution to Dining Philosophers

■ Based on monitors
■ The solution assumes that

● A philosopher can take his/her chopsticks only when are both
free

■ The proposed solution is deadlock-free

60

Solution to Dining Philosophers
monitor DP {

enum { THINKING; HUNGRY, EATING) state [5] ;
condition self [5];

void pickup (int i) {
state[i] = HUNGRY;
test(i);
if (state[i] != EATING) self [i].wait();

}

void putdown (int i) {
state[i] = THINKING;

// test left and right neighbors
test((i + 4) % 5);
test((i + 1) % 5);

}

61

Solution to Dining Philosophers

void test (int i) {
if ((state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&
(state[(i + 1) % 5] != EATING)) {

state[i] = EATING ;
self[i].signal() ;

}
}

initialization_code() {
for (int i = 0; i < 5; i++)
state[i] = THINKING;

}
}

62

Solution to Dining Philosophers

■ Each philosopher p invokes the operations pickup() and putdown()
in the following sequence:

while (1) {
Think;
DP.pickup (p);
Eat;
DP.putdown (p);

}

63

Overview

■ The Critical-Section Problem
■ Software Solutions
■ Synchronization Hardware
■ Semaphores
■ Monitors
■ Synchronization Examples

64

Synchronization Examples

■ Solaris
■ Windows XP
■ Linux
■ Pthreads

65

Solaris Synchronization

■ Implements a variety of mechanisms to support multitasking,
multithreading (including real-time threads), and multiprocessing

■ Adaptive mutexes for efficiency when protecting data from short
code segments

■ Uses semaphores, condition variables and readers-writers locks
when longer sections of code need access to data

66

Windows XP Synchronization

■ Uses interrupt masks to protect access to global resources from
kernel threads on uniprocessor systems

■ Uses spinlocks on multiprocessor systems
■ For out-of-kernel synch provides dispatcher objects

● may act as either mutexes and semaphores
■ Dispatcher objects may also provide events

● An event acts much like a condition variable

67

Linux Synchronization

■ Linux:
● Prior Version 2.6, non-preemptive kernel

4A task executed in system mode cannot be interrupted, even
by a higher-priority thread

● Version 2.6 and later, fully preemptive
■ Linux provides:

4semaphores
4spin locks

■ Linux kernel
● Multi-processor

4Enable/disable spinlocks (active only for short times)
● Single-processor

4Disable/Enable preemption

68

Pthreads Synchronization

■ Pthreads API is OS-independent
■ It provides:

● mutex locks
● condition variables

■ Non-portable extensions include:
● read-write locks
● spin locks

