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Outline

■ Processes
■ Threads
■ Scheduling algorithms
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Process Concept
■ Program is passive entity stored on disk (executable file), 

process is active 
● Program becomes originates when executable file loaded into 

memory and run
■ Execution of program started via GUI mouse clicks, command 

line entry of its name, etc
■ One program can be several processes

● Consider multiple users executing the same program
■ Process – a program in execution; process execution must 

progress in sequential fashion
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Process Concept

■ Multiple parts
● The program code, also called text section
● Current activity including program counter, processor 

registers
● Stack containing temporary data

4Function parameters, return addresses, local 
variables

● Data section containing global variables
● Heap containing memory dynamically allocated during 

run time
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Process in Memory
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Process State

■ As a process executes, it changes state
● new:  The process is being created
● running:  Instructions are being executed
● waiting:  The process is waiting for some event to occur
● ready:  The process is waiting to be assigned to a 

processor
● terminated:  The process has finished execution
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Diagram of Process State
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Process Control Block (PCB)

Information associated with each process 
(also called task control block)
■ Process state – running, waiting, etc
■ Program counter – location of 

instruction to next execute
■ CPU registers – contents of all process-

centric registers
■ CPU scheduling information- priorities, 

scheduling queue pointers
■ Memory-management information –

memory allocated to the process
■ Accounting information – CPU used, 

clock time elapsed since start, time 
limits

■ I/O status information – I/O devices 
allocated to process, list of open files
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Context Switch

■ When CPU switches to another process, the system must save 
the state of the old process and load the saved state for the 
new process via a context switch

■ Context of a process represented in the PCB
■ Context-switch time is overhead; the system does no useful 

work while switching
● The more complex the OS and the PCB è the longer the 

context switch
■ Time dependent on hardware support

● Some hardware provides multiple sets of registers per CPU 
è multiple contexts loaded at once
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CPU Switch From Process to Process
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Process Representation in Linux

Represented by the C structure task_struct

pid t_pid; /* process identifier */ 
long state; /* state of the process */ 
unsigned int time_slice /* scheduling information */ 
struct task_struct *parent; /* this process’s parent */ 
struct list_head children; /* this process’s children */ 
struct files_struct *files; /* list of open files */ 
struct mm_struct *mm; /* address space of this process */
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Process Creation

■ Parent process create children processes, which, in turn 
create other processes, forming a tree of processes

■ Generally, process identified and managed via a process 
identifier (pid)

■ Resource sharing options
● Parent and children share all resources
● Children share subset of parent’s resources
● Parent and child share no resources

■ Execution options
● Parent and children execute concurrently
● Parent waits until children terminate
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A Tree of Processes in Linux

init
pid = 1

sshd
pid = 3028

login
pid = 8415

kthreadd
pid = 2

sshd
pid = 3610

pdflush
pid = 200

khelper
pid = 6

tcsch
pid = 4005

emacs
pid = 9204

bash
pid = 8416

ps
pid = 9298
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Process Creation (Cont.)

■ Address space
● Child duplicate of parent
● Child has a program loaded into it

■ UNIX examples
● fork() system call creates new process
● exec() system call used after a fork() to replace the 

process’ memory space with a new program
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Process Termination

■ Process executes last statement and then asks the operating 
system to delete it using the exit() system call.
● Returns status data from child to parent (via wait())
● Process’ resources are deallocated by operating system

■ Parent may terminate the execution of children processes using 
the abort() system call.  Some reasons for doing so:
● Child has exceeded allocated resources
● Task assigned to child is no longer required
● The parent is exiting and the operating systems does not 

allow  a child to continue if its parent terminates



16

Process Termination

■ Some operating systems do not allow child to exists if its parent 
has terminated.  If a process terminates, then all its children must 
also be terminated.
● cascading termination.  All children, grandchildren, etc.  are  

terminated.
● The termination is initiated by the operating system.

■ The parent process may wait for termination of a child process by 
using the wait()system call. The call returns status information 
and the pid of the terminated process

pid = wait(&status); 

■ If no parent waiting (did not invoke wait()) process is a zombie
■ If parent terminated without invoking wait , process is an orphan
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Example in UNIX
#include <iostream>
#include <unistd.h>
#include <stdlib.h>

#include <sys/types.h>
#include <sys/wait.h>
using namespace std;

int main(int argc, char* argv[]) {
pid_t pid;
pid=fork(); /* genera un nuovo processo */
if(pid<0) { /* errore */

cout << "Errore nella creazione del processo\n";
exit(-1);

} else if(pid==0) { /* processo figlio */

execlp("/usr/bin/touch", "touch", "my_new_file", NULL);
} else { /* processo genitore */

int status;
pid = wait(&status);

cout << "Il processo figlio " << pid << " ha terminato\n";
exit(0);

}

}
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Multiprocess Architecture – Chrome Browser

■ Many web browsers ran as single process (some still do)
● If one web site causes trouble, entire browser can hang or crash

■ Google Chrome Browser is multiprocess with 3 different types of 
processes: 
● Browser process manages user interface, disk and network I/O
● Renderer process renders web pages, deals with HTML, 

Javascript. A new renderer created for each website opened
4 Runs in sandbox restricting disk and network I/O, minimizing 

effect of security exploits
● Plug-in process for each type of plug-in
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Multitasking in Mobile Systems

■ Some mobile systems (e.g., early version of iOS)  allow only one 
process to run, others suspended

■ Due to screen real estate, user interface limits iOS provides for a 
● Single foreground process- controlled via user interface
● Multiple background processes– in memory, running, but not 

on the display, and with limits
● Limits include single, short task, receiving notification of events, 

specific long-running tasks like audio playback
■ Android runs foreground and background, with fewer limits

● Background process uses a service to perform tasks
● Service can keep running even if background process is 

suspended
● Service has no user interface, small memory use
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Threads

■ Most modern applications are multithreaded
■ Threads run within application
■ Multiple tasks with the application can be implemented by 

separate threads
● Update display
● Fetch data
● Spell checking
● Answer a network request

■ Process creation is heavy-weight while thread creation is 
light-weight

■ Can simplify code, increase efficiency
■ Kernels are generally multithreaded
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Single and Multithreaded Processes

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process
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Multithreaded Server Architecture

client

(1) request
(2) create new

thread to service
the request

(3) resume listening
for additional

client requests

server thread
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Benefits

■ Responsiveness – may allow continued execution if part of 
process is blocked, especially important for user interfaces

■ Resource Sharing – threads share resources of process, easier 
than shared memory or message passing

■ Economy – cheaper than process creation, thread switching 
lower overhead than context switching

■ Scalability – process can take advantage of multiprocessor 
architectures
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Multicore Programming

■ Multicore or multiprocessor systems putting pressure on 
programmers, challenges include:
● Dividing activities
● Balance
● Data splitting
● Data dependency
● Testing and debugging

■ Parallelism implies a system can perform more than one task 
simultaneously

■ Concurrency supports more than one task making progress
● Single processor / core, scheduler providing concurrency
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Multicore Programming (Cont.)

■ Types of parallelism 
● Data parallelism – distributes subsets of the same data 

across multiple cores, same operation on each
● Task parallelism – distributing threads across cores, each 

thread performing unique operation
■ As # of threads grows, so does architectural support for threading

● CPUs have cores as well as hardware threads
● Consider Oracle SPARC T4 with 8 cores, and 8 hardware 

threads per core
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Concurrency vs. Parallelism
■ Concurrent execution on single-core system:

■ Parallelism on a multi-core system:

T1 T2 T3 T4 T1 T2 T3 T4 T1single core

time

…

T1 T3 T1 T3 T1core 1

T2 T4 T2 T4 T2core 2

time

…

…
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Multicore Processors

■ Recent trend to place multiple processor cores on same 
physical chip

■ Faster and consumes less power
■ Multiple threads per core also growing

● Takes advantage of memory stall to make progress on 
another thread while memory retrieve happens
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Multithreaded Multicore System
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Amdahl’s Law

■ Identifies performance gains from adding additional cores to an 
application that has both serial and parallel components

■ S is serial portion
■ N processing cores

■ That is, if application is 75% parallel / 25% serial, moving from 1 to 2 
cores results in speedup of 1.6 times

■ As N approaches infinity, speedup approaches 1 / S
■ Serial portion of an application has important effect on performance 

gained by adding additional cores
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User Threads and Kernel Threads

■ User threads - management done by user-level threads library
■ Three primary thread libraries:

● POSIX Pthreads
● Windows threads
● Java threads

■ Kernel threads - Supported by the Kernel
■ Examples – virtually all general purpose operating systems, including:

● Windows 
● Solaris
● Linux
● Tru64 UNIX
● Mac OS X
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Multithreading Models

■ Many-to-One

■ One-to-One

■ Many-to-Many
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Many-to-One

■ Many user-level threads mapped to 
single kernel thread

■ One thread blocking causes all to block
■ Multiple threads may not run in parallel 

on muticore system because only one 
may be in kernel at a time

■ Few systems currently use this model
■ Examples:

● Solaris Green Threads
● GNU Portable Threads

user thread

kernel threadk
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One-to-One

■ Each user-level thread maps to kernel thread
■ Creating a user-level thread creates a kernel thread
■ More concurrency than many-to-one
■ Number of threads per process sometimes 

restricted due to overhead
■ Examples

● Windows
● Linux
● Solaris 9 and later

user thread

kernel threadkkkk
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Many-to-Many Model
■ Allows many user level threads to be 

mapped to many kernel threads
■ Allows the operating system to create 

a sufficient number of kernel threads
■ Solaris prior to version 9
■ Windows with the ThreadFiber

package
user thread

kernel threadkkk



35

Two-level Model

■ Similar to M:M, except that it allows a user thread to be 
bound to kernel thread

■ Examples
● IRIX
● HP-UX
● Tru64 UNIX
● Solaris 8 and earlier

user thread

kernel threadkkk k
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Thread Libraries

■ Thread library provides programmer with API for creating 
and managing threads

■ Two primary ways of implementing
● Library entirely in user space
● Kernel-level library supported by the OS
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Pthreads

■ May be provided either as user-level or kernel-level
■ A POSIX standard (IEEE 1003.1c) API for thread creation and 

synchronization
■ Specification, not implementation
■ API specifies behavior of the thread library, implementation is 

up to development of the library
■ Common in UNIX operating systems (Solaris, Linux, Mac OS X)
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Threading Issues

■ Semantics of fork() and exec() system calls
■ Signal handling

● Synchronous and asynchronous
■ Thread cancellation of target thread

● Asynchronous or deferred
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Semantics of fork() and exec()

■ Does fork()duplicate only the calling thread or all 
threads?
● Some UNIXes have two versions of fork

■ exec() usually works as normal – replace the running 
process including all threads
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Signal Handling

■ Signals are used in UNIX systems to notify a process that a 
particular event has occurred.

■ A signal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled by one of two signal handlers:

1. default
2. user-defined

■ Every signal has default handler that kernel runs when 
handling signal
● User-defined signal handler can override default
● For single-threaded, signal delivered to process
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Signal Handling (Cont.)

■ Where should a signal be delivered for multi-threaded? 
● Deliver the signal to the thread to which the signal 

applies
● Deliver the signal to every thread in the process
● Deliver the signal to certain threads in the process
● Assign a specific thread to receive all signals for the 

process
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Thread Cancellation

■ Terminating a thread before it has finished
■ Thread to be canceled is target thread
■ Two general approaches:

● Asynchronous cancellation terminates the target thread 
immediately

● Deferred cancellation allows the target thread to periodically 
check if it should be cancelled

■ Pthread code to create and cancel a thread:
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Thread Cancellation (Cont.)
■ Invoking thread cancellation requests cancellation, but actual 

cancellation depends on thread state

■ If thread has cancellation disabled, cancellation remains pending 
until thread enables it

■ Default type is deferred
● Cancellation only occurs when thread reaches cancellation 

point
4 I.e. pthread_testcancel()
4 Then cleanup handler is invoked

■ On Linux systems, thread cancellation is handled through signals
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Operating System Examples

■ Windows Threads
■ Linux Threads
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Windows Threads

■ Windows implements the Windows API – primary API for Win 
98, Win NT, Win 2000, Win XP, and Win 7

■ Implements the one-to-one mapping, kernel-level
■ Each thread contains

● A thread id
● Register set representing state of processor
● Separate user and kernel stacks for when thread runs in 

user mode or kernel mode
● Private data storage area used by run-time libraries and 

dynamic link libraries (DLLs)
■ The register set, stacks, and private storage area are known as 

the context of the thread
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Windows Threads Data Structures

user spacekernel space

pointer to  
parent process

thread start 
 address

ETHREAD

KTHREAD

• 
• 
•

kernel 
stack

scheduling 
and 

synchronization
information

• 
• 
•

user 
stack

thread-local 
storage

thread identifier

TEB

• 
• 
•

The primary data structures of a 
thread include:

• ETHREAD (executive 
thread block) – includes 
pointer to process to which 
thread belongs and to 
KTHREAD, in kernel space

• KTHREAD (kernel thread 
block) – scheduling and 
synchronization info, 
kernel-mode stack, pointer 
to TEB, in kernel space

• TEB (thread environment 
block) – thread id, user-
mode stack, thread-local 
storage, in user space
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Linux Threads

■ Linux refers to them as tasks rather than threads
■ Thread creation is done through clone() system call
■ clone() allows a child task to share the address space of the 

parent task (process)
● Flags control behavior

■ struct task_struct points to process data structures 
(shared or unique)

flag meaning

CLONE_FS

CLONE_VM

CLONE_SIGHAND

CLONE_FILES

File-system information is shared.

The same memory space is shared.

Signal handlers are shared.

The set of open files is shared.
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Process Scheduling

■ Maximize CPU use, quickly switch processes onto CPU for 
time sharing

■ Process scheduler selects among available processes for 
next execution on CPU

■ Maintains scheduling queues of processes
● Job queue – set of all processes in the system
● Ready queue – set of all processes residing in main 

memory, ready and waiting to execute
● Device queues – set of processes waiting for an I/O device
● Processes migrate among the various queues
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Basic Concepts

■ Maximum CPU utilization 
obtained with multiprogramming

■ CPU–I/O Burst Cycle – Process 
execution consists of a cycle of 
CPU execution and I/O wait

■ CPU burst followed by I/O burst
■ CPU burst distribution is of main 

concern

CPU burst
load store
add store
read from file

store increment
index
write to file

load store
add store
read from file

wait for I/O

wait for I/O

wait for I/O

I/O burst

I/O burst

I/O burst

CPU burst

CPU burst

•
•
•

•
•
•



50

Ready Queue And Various I/O Device Queues
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Representation of Process Scheduling

■ Queueing diagram represents queues, resources, flows
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Schedulers

■ Short-term scheduler  (or CPU scheduler) – selects which process should 
be executed next and allocates CPU
● Sometimes the only scheduler in a system
● Short-term scheduler is invoked frequently (milliseconds) Þ (must be 

fast)
■ Long-term scheduler  (or job scheduler) – selects which processes should 

be brought into the ready queue
● Long-term scheduler is invoked  infrequently (seconds, minutes) Þ

(may be slow)
● The long-term scheduler controls the degree of multiprogramming

■ Processes can be described as either:
● I/O-bound process – spends more time doing I/O than computations, 

many short CPU bursts
● CPU-bound process – spends more time doing computations; few very 

long CPU bursts
■ Long-term scheduler strives for good process mix



53

Addition of Medium Term Scheduling

■ Medium-term scheduler  can be added if degree of multiple 
programming needs to decrease
● Remove process from memory, store on disk, bring back in 

from disk to continue execution: swapping
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CPU Scheduler

■ Short-term scheduler selects from among the processes in
ready queue, and allocates the CPU to one of them
● Queue may be ordered in various ways

■ CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

■ Scheduling under 1 and 4 is nonpreemptive
■ All other scheduling is preemptive

● Consider access to shared data
● Consider preemption while in kernel mode
● Consider interrupts occurring during crucial OS activities
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Scheduling Criteria

■ CPU utilization – keep the CPU as busy as possible
■ Throughput – # of processes that complete their execution per 

time unit
■ Turnaround time – amount of time to execute a particular 

process
■ Waiting time – amount of time a process has been waiting in the 

ready queue
■ Response time – amount of time it takes from when a request 

was submitted until the first response is produced, not output  (for 
time-sharing environment)
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First- Come, First-Served (FCFS) Scheduling

Process Burst Time
P1 24
P2 3
P3 3

■ Suppose that the processes arrive in the order: P1 , P2 , P3  
The schedule is:

■ Waiting time for P1 = 0; P2 = 24; P3 = 27
■ Average waiting time:  (0 + 24 + 27)/3 = 17

P P P1 2 3

0 24 3027



57

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:
P2 , P3 , P1

■ The schedule is:

■ Waiting time for P1 = 6; P2 = 0; P3 = 3
■ Average waiting time:   (6 + 0 + 3)/3 = 3
■ Much better than previous case
■ Convoy effect - short process behind long process

● Consider one CPU-bound and many I/O-bound processes

P1
0 3 6 30

P2 P3
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Shortest-Job-First (SJF) Scheduling

■ Associate with each process the length of its next CPU burst
● Use these lengths to schedule the process with the shortest 

time
■ SJF is optimal – gives minimum average waiting time for a given 

set of processes
● The difficulty is knowing the length of the next CPU request
● Could ask the user



59

Example of SJF

ProcessArrival Time Burst Time
P1 0.0 6
P2 2.0 8
P3 4.0 7
P4 5.0 3

■ SJF scheduling chart

■ Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P3
0 3 24

P4 P1
169

P2
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Determining Length of Next CPU Burst

■ Can only estimate the length – should be similar to the previous one
● Then pick process with shortest predicted next CPU burst

■ Can be done by using the length of previous CPU bursts, using 
exponential averaging

■ Commonly, α set to ½
■ Preemptive version called shortest-remaining-time-first

:Define  4.
10 ,  3.

burst  CPU next the for value predicted   2.
burst  CPU  of length  actual  1.

££

=

=

+

aa
t 1n

th
n nt

( ) .1 1 nnn t taat -+==
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Prediction of the Length of the Next CPU Burst

6 4 6 4 13 13 13 …
810 6 6 5 9 11 12 …

CPU burst (ti)

"guess" (τi)

ti

τi

2

time

4

6

8

10

12
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Examples of Exponential Averaging

■ a =0
● tn+1 = tn

● Recent history does not count
■ a =1

● tn+1 = a tn
● Only the actual last CPU burst counts

■ If we expand the formula, we get:
tn+1 = a tn+(1 - a)a tn -1 + …

+(1 - a )ja tn -j + …

■ Since both a and (1 - a) are less than or equal to 1, each 
successive term has less weight than its predecessor
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Example of Shortest-remaining-time-first

■ Now we add the concepts of varying arrival times and preemption to 
the analysis

ProcessAarri Arrival TimeT Burst Time
P1 0 8
P2 1 4
P3 2 9
P4 3 5

■ Preemptive SJF

■ Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 
msec

P4
0 1 26

P1 P2
10

P3P1
5 17



64

Priority Scheduling

■ A priority number (integer) is associated with each process

■ The CPU is allocated to the process with the highest priority 
(smallest integer º highest priority)
● Preemptive
● Nonpreemptive

■ SJF is priority scheduling where priority is the inverse of predicted 
next CPU burst time

■ Problem º Starvation – low priority processes may never execute

■ Solution º Aging – as time progresses increase the priority of the 
process
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Example of Priority Scheduling

ProcessA arri Burst TimeT Priority
P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

■ Priority scheduling:

■ Average waiting time = 8.2 msec

1

0 1 19

P1 P2
16

P4P3
6 18

P
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Round Robin (RR)

■ Each process gets a small unit of CPU time (time quantum q), 
usually 10-100 milliseconds.  After this time has elapsed, the 
process is preempted and added to the end of the ready queue.

■ If there are n processes in the ready queue and the time 
quantum is q, then each process gets 1/n of the CPU time in 
chunks of at most q time units at once.  No process waits more 
than (n-1)q time units.

■ Timer interrupts every quantum to schedule next process
■ Performance

● q large Þ FIFO
● q small Þ q must be large with respect to context switch, 

otherwise overhead is too high
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Example of RR with Time Quantum = 4

Process Burst Time
P1 24
P2 3
P3 3

■ The execution is: 

■ Typically, higher average turnaround than SJF, but better 
response

■ q should be large compared to context switch time
■ q usually 10ms to 100ms, context switch < 10 usec

P P P1 1 1

0 18 3026144 7 10 22

P2 P3 P1 P1 P1
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Multilevel Queue

■ Ready queue is partitioned into separate queues, eg:
● foreground (interactive)
● background (batch)

■ Process permanently in a given queue
■ Each queue has its own scheduling algorithm:

● foreground – RR
● background – FCFS

■ Scheduling must be done between the queues:
● Fixed priority scheduling; (i.e., serve all from foreground then 

from background).  Possibility of starvation.
● Time slice – each queue gets a certain amount of CPU time 

which it can schedule amongst its processes; i.e., 80% to 
foreground in RR, 20% to background in FCFS 
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Multilevel Queue Scheduling
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Multilevel Feedback Queue

■ A process can move between the various queues; aging can be 
implemented this way

■ Multilevel-feedback-queue scheduler defined by the following 
parameters:
● number of queues
● scheduling algorithms for each queue
● method used to determine when to upgrade a process
● method used to determine when to demote a process
● method used to determine which queue a process will enter 

when that process needs service



71

Example of Multilevel Feedback Queue

■ Three queues: 
● Q0 – RR with time quantum 8 

milliseconds
● Q1 – RR time quantum 16 milliseconds
● Q2 – FCFS

■ Scheduling
● A new job enters queue Q0 which is 

served FCFS
4 When it gains CPU, job receives 8 

milliseconds
4 If it does not finish in 8 

milliseconds, job is moved to 
queue Q1

● At Q1 job is again served FCFS and 
receives 16 additional milliseconds
4 If it still does not complete, it is 

preempted and moved to queue Q2
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Operating System Examples

■ Windows XP scheduling
■ Linux scheduling
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Windows XP Scheduling

■ Thread scheduling based on
● Priority
● Preemption
● Time slice

■ A thread is executed until one of the following event occurs
● The thread has terminated its execution
● The thread has exhausted its assigned time slice
● The has executed a blocking system call
● A higher-priority thread has entered the ready queue
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Kernel Priorities

■ Kernel priority scheme: 32 priority levels
● Real-time class (16-31)
● Variable class (1-15)
● Memory management thread (0)

■ A different queue for each priority level
● Queues are scanned from higher levels to lower levels
● When no thread is found a special thread (idle thread) is executed
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Win32 API priorities
■ API Priority classes

● REALTIME_PRIORITY_CLASS -> Real-time Class
● HIGH_PRIORITY_CLASS -> Variable Class
● ABOVE_NORMAL_PRIORITY_CLASS -> Variable Class
● NORMAL_PRIORITY_CLASS -> Variable Class
● BELOW_NORMAL_PRIORITY_CLASS -> Variable Class
● IDLE_PRIORITY_CLASS -> Variable Class

■ Relative Priority
● TIME_CRITICAL
● HIGHEST
● ABOVE_NORMAL
● NORMAL
● BELOW_NORMAL
● LOWEST
● IDLE
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Windows XP Priorities

Default Base Priority
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Class Priority Management

■ A thread is stopped as soon as its time slice is exhausted
■ Variable Class

● If a thread stops because time slice is exhausted, its priority level is 
decreased

● If a thread exits a waiting operation, its priority level is increased
4 waiting for data from keyboard, mouse -> significant increase
4 waiting for disk operations -> moderate increase

■ Background/Foreground processes
● The time slice of the foreground window is increased (typically by a 

factor 3)
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Linux Scheduling Through Version 2.5

■ Prior to kernel version 2.5, ran variation of standard UNIX 
scheduling algorithm

■ Version 2.5 moved to constant order O(1) scheduling time
● Preemptive, priority based
● Two priority ranges: time-sharing and real-time
● Real-time range from 0 to 99 and nice value from 100 to 140
● Map into  global priority with numerically lower values indicating higher 

priority
● Higher priority gets larger q
● Task run-able as long as time left in time slice (active)
● If no time left (expired), not run-able until all other tasks use their slices
● All run-able tasks tracked in per-CPU runqueue data structure

4 Two priority arrays (active, expired)
4 Tasks indexed by priority
4 When no more active, arrays are exchanged

● Worked well, but poor response times for interactive processes
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Priorities and Time-slice length



80

RunQueue

■ The runqueue consists of two different arrays
● Active array
● Expired array
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Priority Calculation

■ Real time tasks have static priority
■ Time-sharing tasks have dynamic priority

● Based on nice value +/- 5
● +/- 5 depends on how much the task is interactive

4 Tasks with low waiting times are assumed to be scarcely interactive
4 Tasks with large waiting times are assumed to be highly interactive

■ Priority re-computation is carried out every time a task has exhausted its 
time slice
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Linux 2.6+ Scheduling

■ Recent versions of Linux include a new scheduler: Completely Fair 
Scheduler (CFS)
● Idea: when the time for tasks is not balanced (one or more tasks are not 

given a fair amount of time relative to others), then these tasks should 
be given time to execute.

■ CFS registers the amount of time provided to a given task (the virtual 
runtime)

■ The smaller a task's virtual runtime—meaning the smaller amount of time a 
task has been granted the CPU—the higher its need for the processor.
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Linux 2.6+ Scheduling

■ Tasks are stored in a red-black tree (not a queue) ordered in terms of virtual 
time
● A red-black tree is roughly balanced: any path in the tree will never be 

more than twice as long as any other path.
● Insert and deletion are O(log n)
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Linux 2.6+ Scheduling

■ The scheduler picks the left-most node of the red-black tree. The task 
accounts for its time with the CPU by adding its execution time to the virtual 
runtime and is then inserted back into the tree if runnable.

■ CFS doesn't use priorities directly but instead uses them as a decay factor 
for the time a task is permitted to execute.
● Lower-priority tasks have higher factors of decay, where higher-priority 

tasks have lower factors of delay.
● This means that the time a task is permitted to execute dissipates more 

quickly for a lower-priority task than for a higher-priority task.
● This avoids maintaining run queues per priority.


