
Alessio Vecchio
alessio.vecchio@unipi.it

Pervasive Computing & Networking Lab. (PerLab)
Dip. di Ingegneria dell'Informazione

Università di Pisa

 PerLab

Message Passing
Model

Based on original slides by Silberschatz, Galvin and Gagne

2Message Passing Model

 PerLab

Overview

 Message Passing Model

 Addressing

 Synchronization

 Example of IPC systems

3Message Passing Model

 PerLab

Objectives

 To introduce an alternative solution (to shared
memory) for process cooperation

 To show pros and cons of message passing vs.
shared memory

 To show some examples of message-based
communication systems

4Message Passing Model

 PerLab

Inter-Process Communication (IPC)

 Message system – processes communicate with
each other without resorting to shared variables.

 IPC facility provides two operations:
 send(message) – fixed or variable message size

 receive(message)

 If P and Q wish to communicate, they need to:
 establish a communication link between them

 exchange messages via send/receive

 The communication link is provided by the OS

5Message Passing Model

 PerLab

Implementation Issues

Physical implementation

 Single-processor system
 Shared memory

 Multi-processor systems
 Hardware bus

 Distributed systems
 Networking System + Communication networks

6Message Passing Model

 PerLab

Implementation Issues

Logical properties

 Can a link be associated with more than two
processes?

 How many links can there be between every pair
of communicating processes?

 What is the capacity of a link?

 Is the size of a message that the link can
accommodate fixed or variable?

 Is a link unidirectional or bi-directional?

7Message Passing Model

 PerLab

Implementation Issues

Other Aspects

 Addressing

 Synchronization

 Buffering

8Message Passing Model

 PerLab

Overview

 Message Passing Model

 Addressing

 Synchronization

 Example of IPC systems

9Message Passing Model

 PerLab

Direct Addressing

 Processes must name each other explicitly.

 Symmetric scheme
 send (D, message) – send a message to process D

 receive(S, message) – receive a message from
process S

 Logical properties
 A communication link exits between exactly two process

 Links are established automatically

 Links are usually FIFO

10Message Passing Model

 PerLab

Direct Addressing

 Asymmetric scheme
 send (D, message) – send a message to process D

 receive(proc, message) - receive a message from any
process proc

11Message Passing Model

 PerLab

Indirect Addressing

 Messages are sent/received through mailboxes

 shared data structures where messages are queued
temporarily. Sometimes referred to as ports

 Processes can communicate only if they share a mailbox

 Each mailbox has a unique id

 Processes can communicate only if they share a
mailbox

 Primitives are defined as:

send(mb, message) – send a message to mailbox A

receive(mb, message) – receive a message from
mailbox mb

12Message Passing Model

 PerLab

Indirect Communication

 Operations
 create a new mailbox
 send and receive messages through mailbox
 destroy a mailbox

 Properties of communication link
 Link established only if processes share a common mailbox
 A link may be associated with many processes
 Each pair of processes may share several communication links
 Link may be unidirectional or bi-directional

 Relationships
 One-to-one (private communication)
 Many–to-one (client-server communication)
 Many-to-many (multicast communication)

13Message Passing Model

 PerLab

Overview

 Message Passing Model

 Addressing

 Synchronization

 Example of IPC systems

14Message Passing Model

 PerLab

Synchronization

 Send operations may be
 Synchronous

 Asynchronous

 Receive operations may be
 Blocking

 Non-blocking

15Message Passing Model

 PerLab

Synchronization

 Blocking send, blocking receive
 Rendez-vous between sender and receiver

 Non-blocking send, blocking receive
 Most useful combination (used by servers)

 Variations: receive with timeout, select, proactive test

 Non-blocking send, Non-blocking receive
 Neither party is required to wait

16Message Passing Model

 PerLab

Buffering

 Queue of messages attached to the link;
implemented in one of three ways.

1) Zero capacity – 0 messages
Sender must wait for receiver (in fact, this introduces a
rendezvous).

2) Bounded capacity – finite length of n messages
Sender must wait if the link full.

3) Unbounded capacity – infinite length
Sender never waits.

17Message Passing Model

 PerLab

Process Producer {

 while (TRUE) {

// message in nextProduced

send(mb, nextProduced);

 }

}

Process Consumer {

while (TRUE) {

 receive(mb, msg);

 // consume message

 }

}

Mailbox mb;

Producer-Consumer: Solution (1)

18Message Passing Model

 PerLab

Process Producer {

 while (TRUE) {

// message in nextProduced

receive(mb2, ack);

send(mb1, nextProduced);

 }

}

Process Consumer {

while (TRUE) {

 send(mb2, READY);

 receive(mb1, msg);

 // consume message

 }

}

Mailbox mb1, mb2;

Producer-Consumer: Solution (2)

19Message Passing Model

 PerLab

Overview

 Message Passing Model

 Addressing

 Synchronization

 Client-Server Model

20Message Passing Model

 PerLab

Client-Server Communication

ServerClient

Request

Response

21Message Passing Model

 PerLab

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

