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Objectives

 To introduce an alternative solution (to shared 
memory) for process cooperation

 To show pros and cons of message passing vs. 
shared memory 

 To show some examples of message-based 
communication systems
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Inter-Process Communication (IPC)

 Message system – processes communicate with 
each other without resorting to shared variables.

 IPC facility provides two operations:
 send(message) – fixed or variable message size 

 receive(message)

 If P and Q wish to communicate, they need to:
 establish a communication link between them

 exchange messages via send/receive

 The communication link is provided by the OS
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Implementation Issues

Physical implementation

 Single-processor system
 Shared memory 

 Multi-processor systems
 Hardware bus

 Distributed systems
 Networking System + Communication networks
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Implementation Issues

Logical properties

 Can a link be associated with more than two 
processes?

 How many links can there be between every pair 
of communicating processes?

 What is the capacity of a link?

 Is the size of a message that the link can 
accommodate fixed or variable?

 Is a link unidirectional or bi-directional?
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Implementation Issues

Other Aspects

 Addressing

 Synchronization

 Buffering
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Direct Addressing

 Processes must name each other explicitly.

 Symmetric scheme
 send (D, message) – send a message to process D

 receive(S, message) – receive a message from 
process S

 Logical properties
 A communication link exits between exactly two process

 Links are established automatically

 Links are usually FIFO
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Direct Addressing

 Asymmetric scheme
 send (D, message) – send a message to process D

 receive(proc, message) - receive a message from any 
process proc
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Indirect Addressing

 Messages are sent/received through mailboxes 

 shared data structures where messages are queued 
temporarily. Sometimes referred to as ports

 Processes can communicate only if they share a mailbox

 Each mailbox has a unique id

 Processes can communicate only if they share a 
mailbox

 Primitives are defined as:

send(mb, message) – send a message to mailbox A

receive(mb, message) – receive a message from 
mailbox mb
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Indirect Communication

 Operations
 create a new mailbox
 send and receive messages through mailbox
 destroy a mailbox

 Properties of communication link
 Link established only if processes share a common mailbox
 A link may be associated with many processes
 Each pair of processes may share several communication links
 Link may be unidirectional or bi-directional

 Relationships
 One-to-one (private communication)
 Many–to-one (client-server communication) 
 Many-to-many (multicast communication)
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Synchronization

 Send operations may be
 Synchronous

 Asynchronous

 Receive operations may be
 Blocking

 Non-blocking
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Synchronization

 Blocking send, blocking receive
 Rendez-vous between sender and receiver

 Non-blocking send, blocking receive
 Most useful combination (used by servers)

 Variations: receive with timeout, select, proactive test

 Non-blocking send, Non-blocking receive
 Neither party is required to wait
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Buffering

 Queue of messages attached to the link; 
implemented in one of three ways.

1)  Zero capacity – 0 messages
Sender must wait for receiver  (in fact, this introduces a 
rendezvous).

2)  Bounded capacity – finite length of n messages
Sender must wait if the link full.

3)  Unbounded capacity – infinite length 
Sender never waits.
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Process Producer {

  while (TRUE) {

// message in nextProduced

send(mb, nextProduced);

  }

}

Process Consumer {

while (TRUE) {

   receive(mb, msg);

   // consume message

      }

}

Mailbox mb;

Producer-Consumer: Solution (1) 
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Process Producer {

  while (TRUE) {

// message in nextProduced

receive(mb2, ack);

send(mb1, nextProduced);

  }

}

Process Consumer {

while (TRUE) {

   send(mb2, READY);

   receive(mb1, msg);

   // consume message

      }

}

Mailbox mb1, mb2;

Producer-Consumer: Solution (2) 
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Client-Server Communication

ServerClient

Request

Response
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Questions?
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