Message Passing
Model

Alessio Vecchio

Pervasive Computing & Networking Lab. (PerLab)
Dip. di Ingegneria dell'Informazione
Universita di Pisa

Vi) R
==
i fid |
AN

\ 374 % /
NS Y
7 TYT A
o

S

PerLab

Based on original slides by Silberschatz, Galvin and Gagne

- a2
Overview vy

o 1l N

PerLab

B Message Passing Model
B Addressing

B Synchronization

B Example of IPC systems

Message Passing Model 2

‘PerLab

B To introduce an alternative solution (to shared
memory) for process cooperation

M To show pros and cons of message passing vs.
shared memory

B To show some examples of message-based
communication systems

Message Passing Model 3

&5: Inter-Process Communication (IPC)

‘PerLab

B Message system — processes communicate with
each other without resorting to shared variables.

M |PC facility provides two operations:
® send(message) — fixed or variable message size
® receive(message)

M |f P and Q wish to communicate, they need to:
® establish a communication link between them

® exchange messages via send/receive

B The communication link is provided by the OS

Message Passing Model 4

o P
Pl j"'::} '-.II

Implementation Issues

fi T
S il e

PerLab

Physical implementation

B Single-processor system
® Shared memory

B Multi-processor systems

® Hardware bus

B Distributed systems
® Networking System + Communication networks

Message Passing Model 5

Implementation Issues 5]

‘PerLab

Logical properties
B Can a link be associated with more than two

processes?

B How many links can there be between every pair
of communicating processes?

B \What is the capacity of a link?

M |s the size of a message that the link can
accommodate fixed or variable?

M |s a link unidirectional or bi-directional?

Message Passing Model 6

Implementation Issues

Other Aspects

B Addressing
B Synchronization
B Buffering

Message Passing Model 7

PerLab

e
Overview }

. FoR AN
\"-«4' i .)5/

PerLab

B Message Passing Model
B Addressing

B Synchronization

B Example of IPC systems

Message Passing Model 8

Direct Addressing =

‘PerLab

B Processes must name each other explicitly.

B Symmetric scheme
® send (D, message) — send a message to process D

® receive(S, message) — receive a message from
process S

M | ogical properties
® A communication link exits between exactly two process

® Links are established automatically
® Links are usually FIFO

Message Passing Model 9

e i
= . - B Y,
ey 4&3 =i = \"-,

Direct Addressing

"SIy

PerLab

B Asymmetric scheme
® send (D, message) — send a message to process D

® receive(proc, message) - receive a message from any
process proc

Message Passing Model 10

VALY, [== A
= =} | g

Indirect Addressing

"SIy

“ ‘«:h Al .- A\

‘PerLab

B Messages are sent/received through mailboxes

® shared data structures where messages are queued
temporarily. Sometimes referred to as ports

B Processes can communicate only if they share a mailbox
® Each mailbox has a unique id

® Processes can communicate only if they share a
mailbox

B Primitives are defined as:
send(mb, message) — send a message to mailbox A

receive(mb, message) — receive a message from
mailbox mb

Message Passing Model 11

Indirect Communication yy

P Y
TN
Sl 1

‘PerLab

B Operations
® create a new mailbox
® send and receive messages through mailbox
® destroy a mailbox

B Properties of communication link
® Link established only if processes share a common mailbox
® Alink may be associated with many processes
® Each pair of processes may share several communication links
® Link may be unidirectional or bi-directional

B Relationships
® One-to-one (private communication)

® Many-to-one (client-server communication)
® Many-to-many (multicast communication)

Message Passing Model 12

e
Overview }

. FoR AN
\"-«4' i .)5/

PerLab

B Message Passing Model
B Addressing

B Synchronization

B Example of IPC systems

Message Passing Model 13

."f = '-_'7_%"': :} Y
\

Synchronization

A PR
\“ke' i .)5/

PerLab

B Send operations may be
® Synchronous
® Asynchronous

B Receive operations may be
® Blocking
® Non-blocking

Message Passing Model 14

Synchronization

=)

/1= -:f_:%_n e A

U ..
Nl Tk ".5/

B Blocking send, blocking receive

® Rendez-vous between sender and receiver

B Non-blocking send, blocking receive
® Most useful combination (used by servers)
® Variations: receive with timeout, select, proactive test

B Non-blocking send, Non-blocking receive
® Neither party is required to wait

Message Passing Model 15

q“".—gll.. uid

‘PerLab

Buffering vy

‘PerLab

B Queue of messages attached to the link;
implemented in one of three ways.

1) Zero capacity — 0 messages

Sender must wait for receiver (in fact, this introduces a
rendezvous).

2) Bounded capacity — finite length of n messages
Sender must wait if the link full.

3) Unbounded capacity — infinite length
Sender never waits.

Message Passing Model 16

Producer-Consumer: Solution (1)

\’-.r .'),)5/

PerLab

Mailbox mb:

}

Process Producer {

while (TRUE) {
// message in nextProduced
send(mb, nextProduced);

}

Process Consumer {
while (TRUE) {
receive(mb, msgQ);

// consume message

}

Message Passing Model

17

Producer-Consumer: Solution (2) }

\‘u i ;5/

PerLab

Mailbox mb1, mb2;

Process Producer { Process Consumer {
while (TRUE) { while (TRUE) {
// message in nextProduced send(mb2, READY);
receive(mb2, ack); receive(mb1, msg);
send(mb1, nextProduced); // consume message
} }
} }

Message Passing Model 18

- a2
Overview vy

o 1l N

PerLab

B Message Passing Model
B Addressing

B Synchronization

B Client-Server Model

Message Passing Model 19

Client-Server Communication “

\w | :_‘._.-' }/

PerLab

Request

Response

Message Passing Model 20

“PerLab

Questions?

21

Message Passing Model

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

