
Alessio Vecchio
alessio.vecchio@unipi.it

Pervasive Computing & Networking Lab. (PerLab)
Dip. di Ingegneria dell'Informazione

Università di Pisa

 PerLab

Processes and Threads

Based on original slides by Silberschatz, Galvin, Gagne, and Anastasi

2Processes & Threads

 PerLab

Overview

 Processes
 Threads
 CPU Scheduling

3Processes & Threads

 PerLab

Overview

 Processes
 Threads
 CPU Scheduling

4Processes & Threads

 PerLab

Process Concept

 Process – a program in execution;
 Program is a passive entity (file on disk storage)
 Process is an active entity
 More processes can refer to the same program

Two instances of the same program (e.g., MS Word)
have the same code section but, in general, different
current activities

5Processes & Threads

 PerLab

Process Concept (cont’d)

 A process includes
 Code section
 Current activity

 Current activity is defined by
 Program Counter (IP Register)
 CPU Registers
 Stack
 Data Section (global variables)
 …

6Processes & Threads

 PerLab

Process Control Block (PCB)

7Processes & Threads

 PerLab

Process Control Block (PCB)

Information associated with each process.
 Process state
 Program counter
 CPU registers
 CPU scheduling information
 Memory-management information
 Accounting information
 I/O status information

8Processes & Threads

 PerLab

Process Creation

 Processes need to be created
 Processes are created by other processes
 System call create_process

 Parent process create children processes
 which, in turn create other processes, forming a tree of processes.

 Resource sharing
 Parent and children share all resources.
 Children share subset of parent’s resources.
 Parent and child share no resources.

 Execution
 Parent and children execute concurrently.
 Parent waits until children terminate.

9Processes & Threads

 PerLab

Process Creation (Cont.)

 Address space
 Child duplicate of parent.

 Child has a program loaded into it.

 UNIX examples
 Each process is identified by the process identifier

 fork system call creates new process

 exec system call used after a fork to replace the
process’ memory space with a new program.

10Processes & Threads

 PerLab

Process Creation in UNIX

#include <iostream>
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/wait.h>
using namespace std;

int main(int argc, char* argv[]) {
 pid_t pid;
 pid=fork(); /* genera un nuovo processo */
 if(pid<0) { /* errore */
 cout << "Errore nella creazione del processo\n";
 exit(-1);
 } else if(pid==0) { /* processo figlio */
 execlp("/usr/bin/touch", "touch", "my_new_file", NULL);
 } else { /* processo genitore */
 int status;
 pid = wait(&status);
 cout << "Il processo figlio " << pid << " ha terminato\n";
 exit(0);
 }
}

11Processes & Threads

 PerLab

Process Termination

 Process terminates when executing the last
statement

 The last statement is usually exit
 Process’ resources are deallocated by operating system.

 Parent may terminate execution of children
processes (abort).
 Child has exceeded allocated resources.
 Task assigned to child is no longer required.
 Parent is exiting.

Operating system does not allow child to continue if its parent
terminates.

Cascading termination.

12Processes & Threads

 PerLab
Process Evolution

As a process executes, it changes state
 new: The process is being created.

 running: Instructions are being executed.

 waiting: The process is waiting for some event to occur.

 ready: The process is waiting to be assigned to a
processor.

 terminated: The process has finished execution.

13Processes & Threads

 PerLab

Diagram of Process State

14Processes & Threads

 PerLab

Context Switch

 When CPU switches to another process, the
system must save the state of the old process and
load the saved state for the new process.

 Context-switch time is overhead
 the system does no useful work while switching.

15Processes & Threads

 PerLab

CPU Scheduler

 Selects from among the processes in memory that
are ready to execute, and allocates the CPU to one
of them

 CPU scheduling decisions may take place when a
process:

 Terminates
 Switches from running to waiting state
 Switches from running to ready state
 Switches from waiting to ready

 Scheduling under 1 and 2 is nonpreemptive
 All other scheduling is preemptive

16Processes & Threads

 PerLab

Overview

 Processes
 Threads
 CPU Scheduling

17Processes & Threads

 PerLab

Process

 Resource ownership
 A process is an entity with some allocated resources

Main memory
 I/O devices
Files
…..

 Scheduling/execution
 A process can be viewed as a sequence of states

(execution path)
 The execution path of a process may be interleaved

with the execution paths of other process
 The process is the entity than can be scheduled for

execution

18Processes & Threads

 PerLab

Processes and Threads

 In traditional operating systems the two concepts
are not differentiated

 In modern operating systems
 Process: unit of resource ownership
 Thread: unit of scheduling

 Thread (Lightweight Process)
 Threads belonging to the same process share the

same resources (code, data, files, I/O devices, …)
 Each thread has its own

Thread execution state (Running, Ready, …)
Context (Program Counter, Registers, Stack, …)

19Processes & Threads

 PerLab

Single and Multithreaded Processes

20Processes & Threads

 PerLab
Multithreaded Server Architecture

21Processes & Threads

 PerLab

 Responsiveness
 An interactive application can continue its execution even if a part

of it is blocked or is doing a very long operation

 Resource Sharing
 Thread performing different activity within the same application

can share resources

 Economy
 Thread creation management is much easier than process

creation and management

 Utilization of Multiple Processor Architectures
 Different threads within the same application can be executed

concurrently over different processors in MP systems

Benefits

22Processes & Threads

 PerLab

Execution on a Single-core System

23Processes & Threads

 PerLab

Execution on a Multi-core System

24Processes & Threads

 PerLab

User Threads

 Thread management done by user-level threads
library

 Three primary thread libraries:
 POSIX Pthreads
 Win32 threads
 Java threads

25Processes & Threads

 PerLab

Kernel Threads

 Supported by the Kernel

 Examples
 Windows XP/2000/Vista/7/…
 Mac OS X
 Linux
 Solaris
 Tru64 UNIX (Digital UNIX)

26Processes & Threads

 PerLab

Multithreading Models

 Many-to-One

 One-to-One

 Many-to-Many

27Processes & Threads

 PerLab

Many-to-One

 Many user-level threads mapped to single kernel
thread

 Examples:
 Solaris Green Threads
 GNU Portable Threads

28Processes & Threads

 PerLab

Many-to-One Model

29Processes & Threads

 PerLab

One-to-One

 Each user-level thread maps to kernel thread
 Examples

 Windows NT/XP/2000
 Linux
 Solaris 9 and later

30Processes & Threads

 PerLab

One-to-one Model

31Processes & Threads

 PerLab

Many-to-Many Model

 Allows many user level threads to be
mapped to many kernel threads

 Allows the operating system to create a
sufficient number of kernel threads

 Solaris prior to version 9
 Windows NT/2000 with the ThreadFiber

package

32Processes & Threads

 PerLab

Many-to-Many Model

33Processes & Threads

 PerLab

Two-level Model

 Similar to M:M, except that it allows a user
thread to be bound to kernel thread

 Examples
 IRIX
 HP-UX
 Tru64 UNIX
 Solaris 8 and earlier

34Processes & Threads

 PerLab

Two-level Model

35Processes & Threads

 PerLab

Thread Libraries

 Thread library provides programmer with API for
creating and managing threads

 Two primary ways of implementing
 Library entirely in user space
 Kernel-level library supported by the OS

36Processes & Threads

 PerLab

Pthreads

 May be provided either as user-level or kernel-
level

 A POSIX standard (IEEE 1003.1c) API for thread
creation and synchronization

 API specifies behavior of the thread library,
implementation is up to development of the library

 Common in UNIX operating systems (Solaris,
Linux, Mac OS X)

37Processes & Threads

 PerLab

Java Threads

 Java threads are managed by the JVM

 Typically implemented using the threads model
provided by underlying OS

 Java threads may be created by:
 Extending Thread class
 Implementing the Runnable interface

38Processes & Threads

 PerLab

Operating System Examples

 Windows XP Threads
 Linux Thread

39Processes & Threads

 PerLab

Windows XP Threads

 Implements the one-to-one mapping, kernel-level
 Each thread contains

 A thread id
 Register set
 Separate user and kernel stacks
 Private data storage area

 The register set, stacks, and private storage area
are known as the context of the thread

 The primary data structures of a thread include:
 ETHREAD (executive thread block)
 KTHREAD (kernel thread block)
 TEB (thread environment block)

40Processes & Threads

 PerLab

Windows XP Threads

41Processes & Threads

 PerLab

Linux Threads

 Linux refers to them as tasks rather than threads

 Thread creation is done through clone() system
call

 clone() allows a child task to share the address
space of the parent task (process)

42Processes & Threads

 PerLab

Linux Threads

43Processes & Threads

 PerLab

Overview

 Processes
 Threads
 CPU Scheduling

44Processes & Threads

 PerLab

CPU Scheduler

 Selects from among the ready processes and
allocates the CPU to one of them.

 CPU scheduling decisions may take place in different
situations
 Non-preemptive scheduling

 The running process terminates
 The running process performs an I/O operation or waits for an event

 Preemptive scheduling
 The running process has exhausted its time slice
 A process A transits from blocked to ready and is considered more

important than process B that is currently running
 …

45Processes & Threads

 PerLab

Dispatcher

 Dispatcher module gives control of the CPU to the
process selected by the scheduler; this involves:
 Context Switch
 Switching to user mode
 Jumping to the proper location in the user program to

restart that program

 Dispatch latency
 time it takes for the dispatcher to stop one process and

start another running.
 should be minimized

46Processes & Threads

 PerLab

Type of scheduling

 Batch Systems
 Maximize the resource utilization

 Interactive Systems
 Minimize response times

 Real-Time Systems
 Meet temporal constraints

47Processes & Threads

 PerLab

Objectives

 General
 Fairness
 Load Balancing (multi-processor systems)

 Batch Systems
 CPU utilization (% of time the CPU is executing processes)
 Throughput (# of processes executed per time unit)
 Turnaround time (amount of time to execute a particular process)

 Interactive Systems
 Response time

 amount of time it takes from when a request was submitted until the first
response is produced, not output

 Real-Time Systems
 Temporal Constraints

48Processes & Threads

 PerLab

Scheduling Algorithms

 Batch Systems
 First-Come First-Served (FCFS)
 Shortest Job First (SJF), Shortest Remaining Job First

(SRJF)
 Approximated SJF

 Interactive Systems
 Round Robin (RR)
 Priority-based

 Soft Real-Time Systems
 Priority-based

49Processes & Threads

 PerLab

General-purpose systems

 General-purpose systems (e.g., PCs) typically
manage different types of processes
 Batch processes
 Interactive processes

user commands with different latency requirements

 Soft real-time processes
multimedia applications

 Which is the most appropriate scheduling in such
a context?

50Processes & Threads

 PerLab

Multi-level Ready Queue

 Ready queue is partitioned into separate queues
 foreground (interactive)
 background (batch)

 Each queue has its own scheduling algorithm
 foreground – RR
 background – FCFS

 Scheduling must be done between the queues
 Fixed priority scheduling

Serve all from foreground then from background. Possibility of
starvation.

 Time slice
each queue gets a certain amount of CPU time (i.e., 80% to

foreground in RR, 20% to background in FCFS)

51Processes & Threads

 PerLab

Multilevel Queue Scheduling

52Processes & Threads

 PerLab

Multilevel Feedback Queue

 A process can move between the various
queues; aging can be implemented this way

 Multilevel-feedback-queue scheduler defined by
the following parameters:
 number of queues
 scheduling algorithm for each queue
 method used to determine when to upgrade a process
 method used to determine when to demote a process
 method used to determine which queue a process will

enter when that process needs service

53Processes & Threads

 PerLab

Operating System Examples

 Windows XP scheduling
 Linux scheduling

54Processes & Threads

 PerLab

Windows XP Scheduling

 Thread scheduling based on
 Priority
 Preemption
 Time slice

 A thread is executed until one of the following
event occurs
 The thread has terminated its execution
 The thread has exhausted its assigned time slice
 The has executed a blocking system call
 A thread higher-priority thread has entered the ready

queue

55Processes & Threads

 PerLab

Kernel Priorities

 Kernel priority scheme: 32 priority levels
 Real-time class (16-31)
 Variable class (1-15)
 Memory management thread (0)

 A different queue for each priority level
 Queues are scanned from higher levels to lower levels
 When no thread is found a special thread (idle thread) is

executed

56Processes & Threads

 PerLab

Win32 API priorities

 API Priority classes
 REALTIME_PRIORITY_CLASS Real-time Class
 HIGH_PRIORITY_CLASS Variable Class
 ABOVE_NORMAL_PRIORITY_CLASS Variable Class
 NORMAL_PRIORITY_CLASS Variable Class
 BELOW_NORMAL_PRIORITY_CLASS Variable Class
 IDLE_PRIORITY_CLASS Variable Class

 Relative Priority
 TIME_CRITICAL
 HIGHEST
 ABOVE_NORMAL
 NORMAL
 BELOW_NORMAL
 LOWEST
 IDLE

57Processes & Threads

 PerLab

Windows XP Priorities

 Default Base Priority

58Processes & Threads

 PerLab

Class Priority Management

 A thread is stopped as soon as its time slice is
exhausted

 Variable Class
 If a thread stops because time slice is exhausted, its

priority level is decreased
 If a thread exits a waiting operation, its priority level is

increased
waiting for data from keyboard, mouse significant increase
Waiting for disk operations moderate increase

 Background/Foreground processes
 The time slice of the foreground process is increased

(typically by a factor 3)

59Processes & Threads

 PerLab

Linux Scheduling

 Task scheduling based on
 Priority levels
 Preemption
 Time slices

 Two priority ranges: real-time and time-sharing
 Real-time range from 0 to 99
 Nice range from 100 to 140

 The time-slice length depends on the priority level

60Processes & Threads

 PerLab

Priorities and Time-slice length

61Processes & Threads

 PerLab

RunQueue

 The runqueue consists of two different arrays
 Active array
 Expired array

62Processes & Threads

 PerLab

Priority Calculation

 Real time tasks have static priority
 Time-sharing tasks have dynamic priority

 Based on nice value + 5
 + 5 depends on how much the task is interactive

Tasks with low waiting times are assumed to be scarcely
interactive

Tasks with large waiting times are assumed to be highly
interactive

 Priority re-computation is carried out every time
a task has exhausted its time slice

63Processes & Threads

 PerLab

Linux 2.6+ Scheduling

 Recent versions of Linux include a new scheduler:
Completely Fair Scheduler (CFS)
 Idea: when the time for tasks is not balanced (one or

more tasks are not given a fair amount of time relative
to others), then these tasks should be given time to
execute.

 CFS registers the amount of time provided to a
given task (the virtual runtime)

 The smaller a task's virtual runtime—meaning the
smaller amount of time a task has been granted
the CPU—the higher its need for the processor.

64Processes & Threads

 PerLab

Linux 2.6+ Scheduling

 Tasks are stored in a red-black tree (not a
queue) ordered in terms of virtual time
 A red-black tree is roughly balanced: any path in the

tree will never be more than twice as long as any
other path.

 Insert and deletion are O(log n)

65Processes & Threads

 PerLab

Linux 2.6+ Scheduling

 The scheduler picks the left-most node of the red-black
tree. The task accounts for its time with the CPU by
adding its execution time to the virtual runtime and is
then inserted back into the tree if runnable.

 CFS doesn't use priorities directly but instead uses
them as a decay factor for the time a task is permitted
to execute.
 Lower-priority tasks have higher factors of decay, where

higher-priority tasks have lower factors of delay.
 This means that the time a task is permitted to execute

dissipates more quickly for a lower-priority task than for a
higher-priority task.

 This avoids maintaining run queues per priority.

66Processes & Threads

 PerLab

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

