
Studying Forwarding Differences in European
Mobile Broadband with a Net Neutrality Perspective

Enrico Gregori, Valerio Luconi
IIT-CNR, Pisa, Italy

Email: enrico.gregori@iit.cnr.it, valerio.luconi@iit.cnr.it

Alessio Vecchio
Dip. di Ingegneria dell’Informazione, University of Pisa, Italy

Email: alessio.vecchio@unipi.it

Abstract—Availability of deep packet inspection methods and
systems allows network operators to classify traffic on the base
of the application type. Once classified, traffic may be subject
to artificial bandwidth limitations (e.g. in case of resource-
demanding applications) or to class-dependent forwarding poli-
cies (e.g. to divert the traffic generated by specific applications
on low-priority links). In this paper we describe a method
that can be useful to detect the presence of class-dependent
forwarding policies. The method is based on traceroute-like
mechanisms embedded within the normal communication flow
of an application. The method is contextualized in a study about
the neutrality of mobile network operators, to understand if a
correlation can be found between the presence of class-dependent
forwarding strategies and limitations of bandwidth.

Index Terms—Traceroute, net neutrality, network measure-
ment.

I. INTRODUCTION

The network neutrality principle states that an operator
should provide the same treatment to all traffic flowing through
its networks. Studies have demonstrated that a neutral Internet
is possibly a benefit for the expansion of ISPs [1], [2]. In
the past few years several neutrality violations have been
reported, such as blocking or degrading the performance of
specific applications and services (e.g., peer-to-peer, video
streaming, VoIP). This led to the adoption of specific rules
to protect the neutrality of the Internet [3], [4]. In the EU,
net neutrality regulations are also considered one of the major
achievements towards an open Internet. ISPs are not allowed
to block or throttle traffic. Differentiation can be enforced only
in exceptional circumstances, such as preserving the integrity
of the network, or when a congestion occurs.

Several methods have been proposed to assess the neutrality
of ISPs. The vast majority of them focused on the performance
experienced by different classes of traffic in terms of measured
throughput. The most studied application has been BitTorrent,
as it is particularly resource-demanding from the point of view
of providers [5], [6]. While there are numerous studies that
focus on the wired part of the Internet, only a few are aimed
at assessing neutrality in a mobile broadband scenario.

In addition, modern firewalls and traffic shapers include
sophisticated capabilities, such as the so called policy routing,
which gives the possibility to assign different forwarding paths
to different types of traffic. This feature could be used to
forward certain classes of traffic on slower or more congested

Fig. 1: Differentiation in terms of bandwidth and/or path.

paths, thus indirectly causing differentiation in terms of net-
work performance.

In this paper we study the presence of differences, in terms
of paths, for some classes of traffic. The main contribution
of this paper is the development of a technique useful to
collect the path traversed by different classes of traffic (at the
application level). We extended NeutMon [7], a tool able to
detect class-dependent bandwidth limitations, to include also
this capability. The idea is to possibly discover intentional
differentiation in terms of forwarding strategies. In addition
we present a method useful to analyze the experimental results
obtained with our tool. Preliminary experiments have been
carried out on a set of European mobile network operators
using the MONROE testbed [8].

The rest of the paper is structured as follows. Section II
describes the design, implementation and validation of the pre-
sented tool. Section III describes the procedure used to analyze
experimental data. In Section IV we show the experimental
results. Finally, Section V describes the state of the art, and
Section VI concludes the paper.

II. NEUTMON

NeutMon is a tool aimed at detecting violations of net
neutrality in the path between two endpoints (a client and
a server). The first version of the tool was able to detect
differentiation only in terms of throughput. NeutMon has been
extended to support detection of differentiation in terms of
forwarding rules, as explained in the rest of the paper. Two
types of tests can be executed: Speed test and Traceroute test.
Each test is aimed at detecting differentiation between two
classes of traffic: BitTorrent traffic (BT) and Random traffic.
Since random traffic is used as a baseline, we will refer to it as
Control traffic (CT). The Speed test measures the application-
level throughput obtained by BT and CT between the client

Fig. 2: Example of the procedure for discovering the path.

and the server. The Traceroute test instead collects the path
traversed by BT and CT. The reference scenario is exemplified
in Figure 1. Both tests are implemented on top of TCP and are
executed in two directions: uplink and downlink (with respect
to the client). NeutMon is implemented in Python and released
as open source code1.

A. Speed test

The test runs a data transfer between client and server with
the two classes of traffic: BT and CT. The former follows
the BitTorrent Protocol Specification [9], to be sure that it is
recognized as a real BitTorrent transfer by possible shapers
along the path. BT traffic starts with a handshake phase that
identifies the two speakers as BitTorrent speakers and then the
actual data transfer is executed (and the throughput measured).
CT follows the same pattern, but with completely random
content. Uplink and downlink phases are symmetrical, with
reversed roles of client and server. The throughput is measured
by the endpoint that is receiving the data, and the results are
always stored on the server. The reader is forwarded to [7] for
a more detailed description.

B. Traceroute test

The Traceroute test implemented in NeutMon operates
according to the principles of a typical traceroute application,
however it also introduces some important novelties. Classic
traceroute sends IP probes (with either UDP, ICMP, or TCP as
transport protocol) without establishing a connection with the
target host. If the transport protocol is UDP, probes have empty
or random payload. If ICMP, the probes are echo requests. If
TCP, the probes are TCP SYNs. Traceroute cyclically sends
probes with increasing IP TTL values (starting from 1), until
the target host is reached, or until a certain TTL value is
reached (hereafter MAX_DEPTH). For common traceroute
implementations MAX_DEPTH = 30. At each iteration,
the probe can reach either an intermediate router or the target

1http://vecchio.iet.unipi.it/neutmon/

Algorithm 1 Traceroute test procedure.
1: MAX_TTL← System default TTL
2: MAX_DEPTH ← 30
3:
4: for all x ∈ {1..MAX_DEPTH} do
5: setTTL(x)
6: start timer
7: send 100 bytes
8: setTTL(MAX_TTL)
9: while True do

10: try
11: listen for and consume ICMP Time Exc. errors
12: if ICMP Time Exceeded errors arrive then
13: restart timer
14: end if
15: catch timer expired
16: break
17: end try
18: end while
19: end for

host. When an intermediate router is reached, it should send
back an ICMP Time Exceeded packet. If the target is reached,
it should respond with an ICMP Port Unreachable, ICMP Echo
Reply, or a TCP RST/SYN+ACK, depending on the type of
probes (UDP, ICMP, and TCP respectively). These messages
stop the traceroute operations. An enhancement to standard
traceroute is provided by Paris traceroute, which handles the
presence of anomalies and load balancing by keeping fixed
the fields that are used by routers to balance traffic (i.e. the
5-tuple) [10].

In NeutMon the Traceroute test is executed after the Speed
test using the same connection. This is a substantial difference
with respect to the standard traceroute, which does not open
a connection, as we want the Traceroute test traffic to be
categorized as application level traffic (BT or CT). In the
following we describe the uplink version of the traceroute test,
as downlink is symmetrical. The traceroute test starts with a
preliminary phase that consists of some BitTorrent messages
aimed at commanding a new download operation. In particular
the client sends an unchoke message to tell the server that it
is allowed to send data requests. The server sends back an
interested message and the request for data chunks. The client
then sends back the requested data. The data transfer includes
the traceroute-like mechanisms. In particular, before starting,
the endpoint sets to 0 the value of a variable x. Such variable
is used to detect the router at x hops from the client (left-
hand side in Figure 2). Data is sent according to the following
procedure: i) variable x is incremented; ii) the TTL associated
to the socket is set to x; iii) data is sent through the socket,
this data will elicit an ICMP error on the router at x hops from
the sender; iv) the TTL associated to the socket is reset to its
default value (MAX_TTL), this is done to re-transmit the
same data with a TTL that makes it reach the other endpoint;
v) ICMP errors are consumed.

This procedure is repeated until x reaches the maximum ex-
ploration depth (MAX_DEPTH). The traceroute test is then
executed again in the opposite direction (the two endpoints

play swapped roles). As for the Speed test, the Traceroute
test for CT follows the same pattern as BT but with random
payloads. The entire procedure is specified in Algorithm 1.
ICMP Time Exceeded errors are consumed within a cycle to
handle possible TCP re-transmissions. Execution exits from
the while cycle when a timer associated to the socket expires
(catch). In other words, if no ICMP Time Exceeded errors
are received for a given amount of time, the tool assumes that
the router at the considered hop count is not responding and
it proceeds to the next hop.

It must be noticed that since NeutMon establishes a con-
nection with the target and at each step resets TTL to
MAX_TTL, the tool is not able to detect when the target is
reached. Thus, the algorithm continues until MAX_DEPTH
is reached.

C. Implementation

NeutMon has been implemented to run on the MONROE
platform [8]. MONROE is a large-scale and distributed testbed
aimed at supporting experimentation on mobile broadband
networks. MONROE counts over 400 nodes distributed in
four European countries: Italy, Norway, Spain, and Sweden.
MONROE nodes host SIM cards of 12 mobile network op-
erators belonging to these countries. The SIM cards of one
Italian operator, Vodafone, are also hosted by Spanish nodes,
in which they operate in roaming. Each node is divided into
two units (head and tail) that together can host up to three
SIM cards of separate operators. Nodes are either static or
mobile. The latter ones can be installed on trains, trucks, or
buses. For security reasons MONROE users do not have direct
access to node resources. Execution of users’ code is based on
containerization, which is a form of OS-level virtualization.
A container can access only the resources and devices that
the kernel is assigning to it. The chosen containerization
software is docker [11], thus users have to pack all their
experiment software in a docker container in order to execute
measurements on MONROE nodes. The container is then
scheduled for execution on the nodes chosen by the user
via either a web interface or a command line client. The
operating system available on MONROE nodes is Debian
Linux. MONROE nodes provide a number of Python-based
libraries and runtime services. To reduce the footprint of the
container image hosting NeutMon, the latter is written in
Python (images are transferred onto nodes before executing
experiments, and a small image can be deployed in shorter
time and with reduced traffic).

D. Validation

We validated the Traceroute test functionalities in a con-
trolled environment hosted between the IIT-CNR and the Di-
partimento di Ingegneria dell’Informazione of the University
of Pisa.

The client machine was located in the IIT-CNR network,
which hosts a Palo Alto firewall [12]. Such device is capa-
ble of recognizing traffic at the application level via deep
packet inspection, and blocking, shaping and forwarding traffic

GARR
Network

CLIENT
FIREWALL SERVER

146.48.127.60

146.48.127.49

Fig. 3: Validation architecture.

according to policies defined by administrators. The server
machine was located at the University of Pisa. The networks
of the IIT-CNR and of the University of Pisa are connected
via the GARR network (the Italian research network) [13], a
high speed network whose link capacity is 20 Gbps and more.
The IIT-CNR and the University of Pisa networks run instead
at 1 Gbps.

The validation scenario is shown in Figure 3. The Palo
Alto firewall can sort traffic between two router hops. We
set up the Palo Alto firewall to assign to BT a different
path from the other types of traffic. In particular BT was
sent to interface 146.48.127.60 and all other traffic was sent
to interface 146.48.127.49. We executed ten runs to ensure
reliability, and in all of them NeutMon was able to identify
the correct path for both BT and CT. We also executed ten runs
with BT traffic shaped to 4 Mbps (in addition to the different
forwarding policy). NeutMon was able to detect the correct
path for both traffic types and detect the shaping of BT (the
measured throughput for BT was always 4 Mbps, while for
CT it was on average 689 Mbps).

III. COMPARING TRACEROUTE RESULTS

The presence of differences in traceroute results is not
always due to differentiation. For instance, two different
paths, starting from the same source and ending in the same
target, may be characterized by different intermediate nodes
as a consequence of load balancing [10]. Thus, to detect the
presence of path differentiation based on the class of traffic we
decided to not analyze a single traceroute for the two classes.
Instead, we collect a set of traceroute results for each class
and then we compare the two sets to highlight statistically
relevant differences (i.e. that could not be due to random load
balancing).

Let PC(s, d) = [i1, i2, ..., in] be the path between source
s and destination d detected when using traffic belonging
to class C, where ij is the interface found at the jth
hop (also indicated as PC(s, d)[j]). We define PC(s, d) =
{PC

1 (s, d), PC
2 (s, d), ..., PC

t (s, d)} the set of t traceroute mea-
surements between source s and destination d collected us-
ing traffic belonging to class C. In the following, for the
sake of clarity, we omit source and destination, thus we
will refer to the sets collected when using BT and CT
simply as PBT and PCT . For each hop j ∈ {1..n}, we
compute the set of interfaces found when using BT and
CT: PBT [j] = {PBT

1 [j], PBT
2 [j], ..., PBT

t [j]} and PCT [j] =
{PCT

1 [j], PCT
2 [j], ..., PCT

t [j]}. Then we compute the differ-
ence between the two sets at each hop. In particular, we

Hop 1 {IP1} {IP1} {} {}

Hop 2 {IP2, IP3} {IP2} {IP3} {}

Hop 3 {IP4, IP5, IP6} {IP5, IP7} {IP4, IP6} {IP7}

Hop 4 {IP8} {IP9} {IP8} {IP9}

.

P BT P CT D BC D CB

Fig. 4: Example of the procedure used for comparing tracer-
oute results.

compute DBC [j] = PBT [j]\PCT [j] and DCB [j] = PCT [j]\
PBT [j]. The former is the set of interfaces found at hop j by
BT and not found by CT, the latter is the set of interfaces found
at the same hop by CT and not found by BT. We used the
same procedure to compare the results obtained by BT and CT
against Paris traceroute. Thus, we also computed DBP [j] =
PBT [j] \ PParis[j] and DCP [j] = PCT [j] \ PParis[j].

If the cardinality of DBC and/or DCB at a given hop is
large, we may reasonably state that such difference could not
be due to just random load balancing. In other words, the
class of traffic may play a role in the forwarding decisions
taken at previous hops. In the same way, the presence of large
values for the cardinality of DBP and/or DCP could reveal
the presence of forwarding policies based on the transport
protocol.

For example, let us suppose that these three traceroute
results have been obtained for BT:

[IP1, IP2, IP4, IP8],
[IP1, IP2, IP5, IP8],
[IP1, IP3, IP6, IP8]

and these for CT:
[IP1, IP2, IP5, IP9],
[IP1, IP2, IP7, IP9],
[IP1, IP2, IP5, IP9].

The resulting sets would be the ones shown in Figure 4.

IV. RESULTS

We ran a preliminary measurement campaign in November-
December 2017. We tested the operators reported in Table I.
For each operator twelve measurements have been carried out.
In each measurement, we collected the path using the two
classes of traffic (BT and CT). We also collected the path
towards the destination using Paris traceroute with the MDA
algorithm, which should enumerate all possible paths between
a source and a destination [14]. The target, for all experiments,
was a server hosted by the University of Pisa, Italy.

Figure 5 shows the plots concerning the Traceroute test
uplink direction (from the MONROE node to the server). Each
plot depicts the cardinality of DBC [j] and DCB [j] against
the hop number j. The upper half of the plot shows the
values of DBC [j] cardinality (y-axis) at each hop j (x-axis).
The lower half instead shows the values for DCB [j]. The

TABLE I: Countries and operators included in experiments.

Country Operator
TIM

Italy Vodafone
Wind

ICE Nordisk
Norway Telenor

Telia Mobile
Telia Norge

Orange
Spain Vodafone (roaming)

Yoigo
H3G Access

Sweden Telenor
Telia Mobile

farther the points from the middle line of the plot, the bigger
the difference in terms of number of interfaces between the
two flows. Large values could represent hops where different
forwarding rules are applied on the base of the class of traffic.
The plots also show for each hop j the cardinality of DBP [j]
and DCP [j].

For some operators we did not observe any difference, in
terms of path, when using BT or CT. We did not observe
any difference also depending on the tool used for collecting
the path (NeutMon and Paris traceroute). This happened with
Vodafone (both non roaming and roaming), Orange, and ICE
Nordisk. In addition Yoigo uplink traceroutes always failed for
both BT and CT. Since all these operators show no difference,
their plots are not included.

In Italy, TIM and Wind show forwarding differences be-
tween BT and CT. TIM seems to show some minor differences
at hop 9, which still belongs to the TIM access network
(we mapped the IPs to the owner’s network using public
Internet Routing Registries data [15]). These differences are
minimal and could be due to load balancing. Wind shows a
greater difference at hops 4 and 7, which are still in the Wind
network. The amplitude of difference could be compatible with
forwarding policies based on the class of traffic.

In Norway, traceroutes show differences for three operators:
Telenor, Telia Mobile, and Telia Norge. The most evident dif-
ferences between BT and CT however are not inside the access
operator’s network. Instead, they occur within an upstream
provider that all the three have in common. Such upstream
provider is Telianet, autonomous system number 1299. The
network of this upstream provider starts at hop 10 for Telenor,
hop 6 for Telia Mobile, and hop 7 for Telia Norge.

In Sweden, all the three operators show traceroute differ-
ences. For H3G the differences are found in the operator’s
network, and this could indicate that a different path is
assigned to the different classes of traffic. The other two
operators show a similar behavior to Norwegian ones. The
differences are present but in an upstream provider, which
again is Telianet, whose network starts at hop 13 for Telenor,
and at hop 5 for Telia Mobile.

We can also observe that in some cases there are some dif-
ferences between the paths experienced by BT and CT and the
paths experienced by Paris traceroute. This happens mainly in

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
7
6
5
4
3
2
1
0
1
2
3
4
5
6
7

BC
CB
BP
CP

(a) Italy, TIM
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

7
6
5
4
3
2
1
0
1
2
3
4
5
6
7

BC
CB
BP
CP

(b) Italy, Wind
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

7
6
5
4
3
2
1
0
1
2
3
4
5
6
7

BC
CB
BP
CP

(c) Norway, Telenor

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
7
6
5
4
3
2
1
0
1
2
3
4
5
6
7

BC
CB
BP
CP

(d) Norway, Telia Mobile
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

7
6
5
4
3
2
1
0
1
2
3
4
5
6
7

BC
CB
BP
CP

(e) Norway, Telia Norge
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

7
6
5
4
3
2
1
0
1
2
3
4
5
6
7

BC
CB
BP
CP

(f) Sweden, H3G Access

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
7
6
5
4
3
2
1
0
1
2
3
4
5
6
7

BC
CB
BP
CP

(g) Sweden, Telenor
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

7
6
5
4
3
2
1
0
1
2
3
4
5
6
7

BC
CB
BP
CP

(h) Sweden, Telia Mobile

Fig. 5: Uplink traceroute comparison. The plots show the cardinality of D (y-axis) against the hop count j (x-axis).

Norwegian and Swedish operators. In particular the differences
are quite large in Telia Norge and Telia Mobile Sweden. Again,
the upstream provider in these cases is Telianet. This could
indicate that the provider forwards monitoring traffic (such as
traceroute) on different paths, or that it selects different paths
according to the transport protocol (Paris traceroute uses UDP
probes).

Our results show that some operators seem to apply forward-
ing rules that may take the class of traffic into account. For
others no differences could be detected from this point of view.
We now compare these results with the results presented in [7],
which are relative to the performance in terms of bandwidth
obtained by BT and CT with the same operators. In [7] we
showed that one operator (Vodafone) applied differentiation
in terms of throughput experienced by BT and CT (both in
the home network and in roaming). In particular CT obtains
a much better performance. Two other operators (Yoigo and
Telenor Sweden) obtained poor performance for both BT and
CT. All other operators did not show any differences in terms
of performance. As stated above, for Vodafone no differences
in terms of forwarding are observed. For Yoigo, all uplink
traceroutes (for both BT and CT) failed. The low performance
in terms of bandwidth could be related to the cause of the
traceroute failures (but further investigation is needed). For
Telenor Sweden we observed forwarding differences in an
upstream provider (Telianet). We believe that this is not the
cause of the poor performance, as the same upstream provider
shows forwarding differences also with other operators, but in
these cases no performance degradation is observed.

All other operators that showed forwarding differences did
not show a corresponding differentiation in performance (as

reported by [7]). It must be noticed that the vast majority
of mobile network operators assign to their users private IP
addresses (i.e., addresses belonging to the networks 10.0.0.0/8,
192.168.0.0/16, and 172.16.0.0/12 [16]), and provide access
to the Internet via Network Address Translation (NAT). In
this procedure the IP addresses fields of IP header and the
port fields of TCP header can be changed, thus load balancing
could be triggered on the traversed path, since these fields
are frequently used for load balancing [10]. Thus, we strongly
believe that further investigation is needed to understand if the
presence of NATs is related to the results here shown.

Figure 6 shows the same plots for the downlink direction,
i.e. from the server to the MONROE node. The figure includes
only the plots of operators that showed some differences (even
if minimal). The only operators that showed substantial dif-
ferences are Telia Mobile Norway and Telia Mobile Sweden.
Again the differences are found in the Telianet network, which
is an upstream provider of both these mobile operators.

V. RELATED WORK

The vast majority of the techniques and tools for assessing
net neutrality focus on measuring the performance obtained
by different classes of traffic in terms of throughput, loss and
latency [17].

Among these the most relevant are Glasnost and Neubot,
which share the approach of relying on the contribution of
volunteer users. Glasnost is a system aimed at detecting
differentiation in ISPs [18]. The client is implemented as a
Java applet, thus taking measurements does not require com-
plex installations, just a web browser. The test compares the
throughput of several applications (including BitTorrent) with

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
6
5
4
3
2
1
0
1
2
3
4
5
6

BC
CB

(a) Italy, Wind
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

6
5
4
3
2
1
0
1
2
3
4
5
6

BC
CB

(b) Norway, Telia Mobile
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

6
5
4
3
2
1
0
1
2
3
4
5
6

BC
CB

(c) Norway, Telia Norge

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
6
5
4
3
2
1
0
1
2
3
4
5
6

BC
CB

(d) Spain, Orange
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

6
5
4
3
2
1
0
1
2
3
4
5
6

BC
CB

(e) Sweden, Telenor
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

6
5
4
3
2
1
0
1
2
3
4
5
6

BC
CB

(f) Sweden, Telia Mobile

Fig. 6: Downlink traceroute comparison. The plots show the cardinality of D (y-axis) against the hop count j (x-axis).

random flows with similar characteristics. New applications
can be easily added by recording their traces and submitting
them to the system. Neubot aims at measuring the neutrality
of the Internet [19]. Neubot operates in the background and
periodically runs tests to measure the quality of service of
different applications. Both systems rely on servers hosted
on the M-Lab infrastructure [20]. Other works based on
active measurements are NetPolice [21], ShaperProbe [22],
and DiffProbe [23].

Network neutrality in a mobile broadband environment
has been recently considered by few works. First, the tool
BonaFide has been developed with the aim of detecting differ-
entiation on several application protocols, such as BitTorrent,
HTTP, Flash video, Real Time Streaming Protocol, VoIP
H323, Session Initiation Protocol (SIP) [24]. Another method
specifically designed to operate in a wireless environment is
discussed in [25]. The work used an approach based on VPN.
The VPN is used to record a trace of networked applications
run on the user’s smartphone. The trace is replayed and
compared with the same trace encrypted in a tunnel (which
should not be affected by differentiation). The method has
been implemented in a publicly available Android app. Results
showed that several US mobile network operators apply traffic
differentiation policies.

The ability of traceroute in discovering Internet paths has
been used by researchers to infer the interconnections between
the entities that compose the Internet. Several systems based
on traceroute measurements have been deployed, such as
CAIDA Ark [26], [27], iPlane [28], DIMES [29], or Por-
tolan [30]. However, as far as we know, traceroute has never
been used to for detecting traffic differentiation.

Several variations of the traceroute mechanisms have been
implemented, for improving its effectiveness or for adding
new functionalities. The most relevant example is Paris tracer-
oute [10] which is designed to solve known issues caused
by the presence of load-balancers. An extension of Paris
traceroute, named MDA (Multipath Detection Algorithm), has
been implemented to discover all the paths generated by load-

balancing mechanisms [14]. Another relevant extension to
traceroute is tracebox, which adds to traceroute support for
discovering middleboxes (i.e., machines that operate at levels
higher than the network level along the path between a source
and a destination) [31].

To the best of our knowledge this is the first work where a
traceroute-like mechanism is used to detect, at the application-
level, differences in terms of forwarding strategies.

VI. CONCLUSION

In this paper we presented a traceroute-like mechanism
useful for detecting the presence of differences in the paths
followed by different classes of traffic. We embedded the
mechanism in NeutMon, a system aimed at studying neutrality
of operators in terms of both performance and forwarding
policies.

We used the MONROE testbed to study the path assigned
to BitTorrent traffic and random traffic in a set of European
mobile network operators spread in four countries. Preliminary
results show that some operators seem to forward the two
types of traffic on different paths. However this practice is not
reflected in a degradation of performance (when comparing
the results presented here with the ones in [7]).

For other operators, the paths show significant differences
only when entering in upstream providers’ networks. This
seems to indicate that even if the possibility of differentiating
the forwarding path according to the application-level class
of traffic exists, it is not used to degrade the performance of
applications, but rather to perform simple traffic engineering.

Future work will concern an extensive campaign of mea-
surements, to better understand the phenomena emerging from
these preliminary experiments.

ACKNOWLEDGMENT

This work is funded by the European Union’s Horizon 2020
research and innovation programme under grant agreement
No. 644399 (MONROE) through the second open call for
projects. The views expressed are solely those of the authors.

REFERENCES

[1] J. Pil Choi and B.-C. Kim, “Net neutrality and investment incentives,”
The RAND Journal of Economics, vol. 41, no. 3, pp. 446–471, 2010.

[2] A. Antonopoulos, E. Kartsakli, C. Perillo, and C. Verikoukis, “Shedding
Light on the Internet: Stakeholders and Network Neutrality,” IEEE
Communications Magazine, vol. 55, no. 7, pp. 216–223, 2017.

[3] B. Obama, “Net Neutrality: President Obama’s Plan for a Free
and Open Internet,” https://obamawhitehouse.archives.gov/node/323681,
2008, [Online; accessed 24-February-2018].

[4] “BEREC Guidelines on the Implementation by National
Regulators of European Net Neutrality Rules,” http://berec.
europa.eu/eng/document_register/subject_matter/berec/download/0/
6160-berec-guidelines-on-the-implementation-b_0.pdf, 2016, [Online;
accessed 6-october-2017].

[5] N. Weaver, R. Sommer, and V. Paxson, “Detecting Forged TCP Reset
Packets,” in Proceedings of the Network and Distributed System Security
Symposium, NDSS, San Diego, California, USA, 2009.

[6] M. Dischinger, A. Mislove, A. Haeberlen, and K. P. Gummadi, “Detect-
ing Bittorrent Blocking,” in Proceedings of the 8th ACM SIGCOMM
Conference on Internet Measurement, ser. IMC ’08. New York, NY,
USA: ACM, 2008, pp. 3–8.

[7] E. Gregori, V. Luconi, and A. Vecchio, “NeutMon: Studying Neutrality
in European Mobile Networks,” in Proc. CNERT ’18, to appear, 2018.

[8] Ö. Alay, A. Lutu, R. García, M. Peón-Quirós, V. Mancuso, T. Hirsch,
T. Dely, J. Werme, K. Evensen, A. Hansen, S. Alfredsson, J. Karlsson,
A. Brunstrom, A. S. Khatouni, M. Mellia, M. A. Marsan, R. Monno, and
H. Lonsethagen, “Measuring and assessing mobile broadband networks
with MONROE,” in 2016 IEEE 17th International Symposium on A
World of Wireless, Mobile and Multimedia Networks (WoWMoM), June
2016, pp. 1–3.

[9] B. Cohen, “The BitTorrent Protocol Specification,” http://www.
bittorrent.org/beps/bep_0003.html, 2017, [Online; accessed 6-october-
2017].

[10] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Lat-
apy, C. Magnien, and R. Teixeira, “Avoiding Traceroute Anomalies with
Paris Traceroute,” in Proc. ACM SIGCOMM IMC ’06, 2006, pp. 153–
158.

[11] “Docker,” https://www.docker.com/.
[12] “Palo Alto Networks,” https://www.paloaltonetworks.com/.
[13] “Consortium GARR,” https://www.garr.it/.
[14] B. Augustin, T. Friedman, and R. Teixeira, “Multipath tracing with Paris

traceroute,” in Proc. IEEE/IFIP E2EMON ’07, 2007, pp. 1–8.
[15] “IRR - Internet Routing Registry,” http://www.irr.net/.
[16] R. G. Moskowitz, D. Karrenberg, Y. Rekhter, E. Lear, and G. J. de Groot,

“Address Allocation for Private Internets,” RFC 1918, 1996.
[17] T. Garrett, L. E. Setenareski, L. M. Peres, L. C. E. Bona, and E. P.

Duarte, “Monitoring Network Neutrality: A Survey on Traffic Differ-
[23] ——, “Diffprobe: Detecting ISP Service Discrimination,” in Proceedings

of the 29th Conference on Information Communications, ser. INFO-
COM’10. Piscataway, NJ, USA: IEEE Press, 2010, pp. 1649–1657.

entiation Detection,” IEEE Communications Surveys Tutorials, vol. PP,
no. 99, pp. 1–1, 2018.

[18] M. Dischinger, M. Marcon, S. Guha, K. P. Gummadi, R. Mahajan, and
S. Saroiu, “Glasnost: Enabling End Users to Detect Traffic Differen-
tiation,” in Proceedings of the 7th USENIX Conference on Networked
Systems Design and Implementation, ser. NSDI’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 27–27.

[19] S. Basso, A. Servetti, and J. C. D. Martin, “The network neutrality
bot architecture: A preliminary approach for self-monitoring of Internet
access QoS,” in 2011 IEEE Symposium on Computers and Communi-
cations (ISCC), June 2011, pp. 1131–1136.

[20] C. Dovrolis, K. Gummadi, A. Kuzmanovic, and S. D. Meinrath, “Mea-
surement Lab: Overview and an Invitation to the Research Community,”
SIGCOMM Comput. Commun. Rev., vol. 40, no. 3, pp. 53–56, Jun. 2010.

[21] Y. Zhang, Z. M. Mao, and M. Zhang, “Detecting Traffic Differentiation
in Backbone ISPs with NetPolice,” in Proceedings of the 9th ACM
SIGCOMM Conference on Internet Measurement, ser. IMC ’09. New
York, NY, USA: ACM, 2009, pp. 103–115.

[22] P. Kanuparthy and C. Dovrolis, “ShaperProbe: End-to-end Detection of
ISP Traffic Shaping Using Active Methods,” in Proceedings of the 2011
ACM SIGCOMM Conference on Internet Measurement Conference, ser.
IMC ’11. New York, NY, USA: ACM, 2011, pp. 473–482.

[24] V. Bashko, N. Melnikov, A. Sehgal, and J. Schönwälder, “BonaFide: A
traffic shaping detection tool for mobile networks,” in 2013 IFIP/IEEE
International Symposium on Integrated Network Management (IM
2013), May 2013, pp. 328–335.

[25] A. Molavi Kakhki, A. Razaghpanah, A. Li, H. Koo, R. Golani,
D. Choffnes, P. Gill, and A. Mislove, “Identifying Traffic Differentiation
in Mobile Networks,” in Proceedings of the 2015 Internet Measurement
Conference, ser. IMC ’15. New York, NY, USA: ACM, 2015, pp.
239–251.

[26] k. claffy, Y. Hyun, K. Keys, M. Fomenkov, and D. Krioukov, “Internet
Mapping: From Art to Science,” in Proc. CATCH ’09, 2009, pp. 205–
211.

[27] “The Cooperative Association for Internet Data Analysis Archipelago
Measurement Infrastructure (CAIDA Ark),” http://www.caida.org/
projects/ark/.

[28] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Kr-
ishnamurthy, and A. Venkataramani, “iPlane: An Information Plane for
Distributed Services,” in Proc. USENIX OSDI ’06, 2006, pp. 367–380.

[29] Y. Shavitt and E. Shir, “DIMES: Let the Internet Measure Itself,” ACM
SIGCOMM Comput. Commun. Rev., vol. 35, no. 5, pp. 71–74, 2005.

[30] A. Faggiani, E. Gregori, L. Lenzini, V. Luconi, and A. Vecchio,
“Smartphone-based crowdsourcing for network monitoring: Opportuni-
ties, challenges, and a case study,” IEEE Communications Magazine,
vol. 52, no. 1, pp. 106–113, January 2014.

[31] G. Detal, B. Hesmans, O. Bonaventure, Y. Vanaubel, and B. Donnet,
“Revealing Middlebox Interference with Tracebox,” in Proc. IMC ’13,
2013, pp. 1–8.

