

Network Neutrality in Mobile Broadband

NeutMon

Alessio Vecchio, University of Pisa, Italy

Network Neutrality

- Network Neutrality: packets on the Internet should be processed impartially by ISPs and other operators, without regard to content, destination or source.
- In EU blocking, throttling, and discrimination of traffic by ISPs is not allowed. All traffic has to be treated equally, and no form of traffic prioritization can be enforced [1].

NeutMon aims at

- Studying the net neutrality problem in a mobile broadband scenario
- Developing tools useful to detect possible violations
- Collecting data about the neutrality level of EU mobile broadband providers
- Analyzing collected data using techniques that take into account the specific characteristics of the considered environment
- Additional problems due to the wireless environment
 - Fluctuations originated by signal strength, retransmissions, number of users, mobility, etc

NeutMon

- NeutMon focuses on the detection of
 - throttling/blocking of Bit Torrent (BT) traffic
 - different forwarding rules for the different classes of traffic

• BT traffic is compared with random Control Traffic (CT)

Implementation

- Two types of tests have been implemented:
 - Speed test
 - Traceroute test.
- Speed test: application-level throughput of the connection between the client and the server, for different classes of traffic.
- Traceroute test: network path that is traversed by different classes of traffic, between the client and the server.
- Each test is performed in both uplink and downlink directions and with the two classes of traffic (BT and CT).

Speed test

Implementation

- The server processes the requests coming from a single client at a time
 - done to avoid interferences during the measurement phase caused by cross-traffic and increased load;
 - clients that desire to carry out a measurement when the server is busy are queued, and they will be served as the current measurement completes.

- First phase: *wide-range experiments*
 - Purpose: collect preliminar information about all operators covered by MONROE (13)
 - Scheme:
 - Four time slots: 02, 08, 14, 20
 - Three executions per time slot
 - Speed test: 10 seconds
- Second phase: focused experiments
 - Purpose: collect additional evidences against suspect operators
 - Scheme:
 - Twelve executions in 24h
 - Speed test: 30 s

- Some cases of differentiation are particularly evident even at first sight.
- Example: CDF of measured throughput for Vodafone Italy collected at 02:00:

- Downlink mean throughput values obtained by BT and CT by all operators at the different time slots.
- Italy:

- Downlink mean throughput values obtained by BT and CT by all operators at the different times.
- Spain:

- Downlink mean throughput values obtained by BT and CT by all operators at the different times.
- Sweden:

- Downlink mean throughput values obtained by BT and CT by all operators at the different times.
- Norway:

- Downlink mean throughput values obtained by BT and CT by all operators at the different times.
- Norway (cont.):

ALL CLASS

Country	Operator	Port 6881 blocked	Throttling
	ТІМ	0%	None
Italy	Vodafone	86.4%	BT (sometimes CT)
-	Blu Wind	41.2%	BT and CT
	ICE	0%	None
	Telenor	0%	None
Norway	Telia Mobile	0%	None
	Telia Norge	0%	None
	Orange	0%	None
Spain	Vodafone	ə 73.9% BT (s	BT (sometimes CT)
	Yoigo	100%	BT and CT
	H3G	0%	None
Sweden	Telenor (Vodafone)	58.3%	BT and CT
	Telia Mobile	0%	None

Analysis tool

- The analysis tool compares the distribution of CT and BT instantaneous throughput (averaged on *d* second intervals)
 - Kolmogorov-Smirnov test
 - False positives (network reported as non neutral when it is neutral) if *d* small

Results of focused experiments (speed)

• Vodafone spain

Results of focused experiments (speed)

• Yoigo spain

- Problem: different traceroutes may traverse multiple paths and still this could not be a case of differentiation, as network operators apply load balancing based on criteria such as port numbers and other fields of the IP/TCP headers (usually the 5-tuple fields).
- We sent flows that are "externally" similar as much as possible (same ports, same addresses).
- We collected different traceroutes for each operator and for each class of traffic.

- For each class of traffic (BT/CT) and traffic direction (UL/DL), we merged all the traceroutes.
- We obtain a data structure that, for each traceroute hop, shows the set of interfaces traversed by one class of traffic in one direction.
- For example for BT-UL we can have:

```
Hop 1: {IP1, IP2, IP3}
Hop 2: {IP4}
Hop 3: {IP5, IP6}
Hop 4: *
Hop 5: {IP7, IP8}
```


- For each traffic direction we computed the intersection and differences between the sets of BT and CT at each hop.
- We identified at each hop which are the exclusive interfaces discovered by just one of the two classes of traffic (if any).

Нор	1	{IP1}	{IP1}	Hop 1
Нор	2	{IP2, IP3}	{IP2}	Нор 2
Нор	3	{IP4, IP5, IP6}	{IP5, IP7}	Нор З
Нор	4	{IP8}	{IP7}	Нор 4
			•••	

BT exclusive	CT exclusive
Нор1: -	Нор1: -

Нор 1	{IP1}	{IP1}	Hop 1
Нор 2	{IP2, IP3}	{IP2}	Нор 2
Нор З	{IP4, IP5, IP6}	{IP5, IP7}	Нор З
Нор 4	{IP8}	{IP7}	Нор 4
•••		•••	

ΒT

Results of wide-range experiments (traceroute)

- We computed the percentage of exclusive interfaces out of the total for each hop.
 - If the percentage is low, the differences between the two sets could be due to load balancing.
 - If the percentage is high it is more likely that the differences between the two sets could be due to different paths applied by operators to different classes.

Results of wide-range experiments (traceroute)

• Some results (Italy):

```
TIM
UL:
    Hop 9
            BT exclusive: 25%, CT exclusive: 40% (likely load balancing)
DL:
    no difference
Vodafone
UL:
    no difference
DL:
    no difference
Wind (Blu)
UL:
           BT exclusive 86%, CT exclusive 80%
    Hop 4
            BT exclusive 83%, CT exclusive 80%
    Hop 7
DL:
            BT exclusive 30%, CT exclusive 50% (could be load balancing)
    Hop 8
```


Advancement status

- Implementation of software for collecting measurements complete
- Collection of measurements
 - Wide-range
 Focused
- Tools for analyzing data

- complete
- Mechanisms for reducing traffic during speed test ongoing (not included in the proposal)