
NeutMon: Studying Neutrality in European Mobile
Networks

Enrico Gregori, Valerio Luconi
IIT-CNR, Pisa, Italy

Email: enrico.gregori@iit.cnr.it, valerio.luconi@iit.cnr.it

Alessio Vecchio
Dip. di Ingegneria dell’Informazione, University of Pisa, Italy

Email: alessio.vecchio@unipi.it

Abstract—Net neutrality is the principle that all data on the In-
ternet should be treated in the same way, without discrimination
by content, application, or service. Research about net neutrality
mostly focused on the wired Internet, and little effort has been
devoted to wireless scenarios. However, mobile devices are now
the main access medium to the Internet for a large fraction of
users and this trend is expected to continue in the next years.

In this paper, we study net neutrality in a European mobile
broadband scenario using NeutMon, a tool developed for running
in the MONROE testbed. MONROE’s nodes are connected to 13
mobile broadband providers spread in four European countries.
Preliminary results show that in this set of operators differenti-
ation is enforced, in terms of bandwidth, for a commonly used
peer-to-peer application, in contrast with recent EU regulations.

Index Terms—Net neutrality, network measurement.

I. INTRODUCTION

According to the Internet neutrality principle a network
should treat all traffic in the same way, without deliberately
degrading the performance of some sources and/or applica-
tions. Several examples of non-neutral behavior have been
reported in the last years, and this fueled the debate at different
levels, from the merely technical standpoint to the economic,
legal, and moral ones [1], [2]. The recent repealing of net
neutrality rules in the USA fueled again the discussion on
this important issue, and highlighted the necessity of tools
able to detect traffic differentiations performed by network
operators. Notable examples of discriminatory policies include
blocking/degrading of bandwidth hungry applications (such as
peer-to-peer or video streaming) and of Internet-based services
that may commercially compete with ISPs (such as voice-over-
IP).

EU-wide rules concerning net neutrality [3] are considered
as one of the major achievements towards the Digital Single
Market. According to these rules, blocking, throttling, and
discrimination of traffic by ISPs is not allowed. All traffic
has to be treated equally, and no form of traffic prioritization
can be enforced. Only few exceptions are allowed: preserving
the integrity of the network, managing temporary congestions,
and compliance with legal obligations.

The degree of interference applied by non-neutral ISPs
may vary greatly, from complete blocking to a degradation
of performance that is so soft to be almost invisible to the end
users. For instance BitTorrent traffic has been both blocked
using forged TCP reset packets and limited, in terms of
bandwidth, by means of traffic shaping mechanisms [4], [5].

In some cases the discrimination policies are applied only
during specific time periods, e.g. corresponding to peak hours.
These factors, together with the inherent variability of network
conditions, make the detection of neutrality violations not
always straightforward.

So far, research on net neutrality focused on the wired
part of the Internet. However, in recent years, smartphones
and tablets have become the preferred choice for accessing a
large number of networked services and applications, from
social networks to video streaming. This paper presents a
study on net neutrality in mobile operators’ networks. The
study has been conducted using MONROE [6], a testbed with
hundreds of nodes connected to 13 operators and distributed in
four European countries (Italy, Norway, Spain and Sweden).
To this purpose we designed and implemented NeutMon, a
system aimed at studying net neutrality in the MONROE
context. The tool can be used for collecting network metrics
related to net neutrality (in particular throughput). This is done
by producing traffic belonging to different classes and then
comparing the observed network characteristics. To the best of
our knowledge, this is the first study performed on a significant
portion of European mobile network operators, especially after
the adoption of EU rules.

The rest of the paper is structured as follows. Section II
shows the state of the art in net neutrality measurements.
Section III introduces NeutMon and the measurement method-
ology. In Section IV we describe NeutMon’s architecture,
and in Section V we show how NeutMon is implemented in
MONROE. Sections VI and VII show experimental results.
The former shows the validation of the NeutMon tool in a
controlled environment, whereas the latter shows results of
measurements carried out in the MONROE testbed. Finally,
Section VIII describes how we intend to demonstrate our
experiment, and Section IX concludes the paper.

II. RELATED WORK

Tools for detecting violations of net neutrality explored
approaches based on both passive and active measurements.

Glasnost is a system that allows ordinary Internet users to
detect differentiation in ISPs [7]. To make the system easy
to use, the client is implemented as a Java applet. Thus, to
start a test, the user is just required to point the browser to
a Web page. The client communicates with one of the server
replicas, hosted on the M-Lab infrastructure [8]. The test is



based on the experienced difference of throughput between
the application suspected to be differentiated and a random
flow with similar characteristics. Glasnost initially focused on
BitTorrent, but subsequently the possibility of adding tests
related to new applications has been introduced. In particular, a
new application can be incorporated by first recording its trace
at packet level and then submitting the trace to the system.
Glasnost has been shut down since February 2017.

Neubot is a collaborative approach to measure the neu-
trality of the Internet [9]. Once installed, the Neubot client
periodically monitors the quality of service by running active
measurements in the background. The system includes a set of
servers used as endpoints during measurements and a central
database where results are collected.

Tariq et al. [10] explored the possibility of detecting network
neutrality violations by passively observing network metrics
on clients. The system, called NANO, is composed of client
agents, which collect data on users machines, and a server,
where information produced by agents is aggregated and
analyzed. The technique includes statistical inference to assess
the presence of network neutrality violations even in the
presence of confounding factors.

NetPolice is a tool conceived to detect content- and routing-
based differentiation in backbone ISPs [11]. This is done by
measuring the loss rate when generating traffic belonging to
different applications (HTTP, BitTorrent, SMTP, PPLive, and
VoIP). HTTP is used as the baseline to detect the presence of
differentiation for the other applications. The TTL of probing
packets is varied to evaluate the loss rate at the desired
hop. Detection relies on the Kolmogorov-Smirnov test, which
operates on the empirical distributions of the applications to be
compared. Resampling is used to increase robustness against
noise. The method includes mechanisms for parsimonious
selection of probing targets.

Other works are aimed at detecting the presence of a traffic
shaper on a network path. ShaperProbe can not on only infer
the presence of traffic shaping mechanisms, but it is also
able to estimate some of the shaping characteristics [12].
ShaperProbe relies on a client that sends probes at a constant
bit-rate equal to the capacity of the narrowest link. The server
measures and observes the received rate at the other endpoint.
A level shift in the received rate is used to infer the presence
of traffic shaping mechanisms. Extensive experiments, carried
out using the M-Lab infrastructure, highlighted a significant
presence of such mechanisms in major ISPs.

DiffProbe is a tool for detecting ISP service discrimi-
nation [13]. The flow of an application that is supposed
to be discriminated is compared with a probing flow. The
probing flow is derived from the application flow using a
combination of size, payload, and port randomization. The
application flow is generated from a previously recorded
application trace (Skype and Vonage are considered in the
experiments). Then the two flows are compared to detect
statistically significant variations in terms of loss rate and/or
delay (using the two-proportion z-test and Kullback-Leibler
divergence respectively). The method is able to identify the

mechanism used by the ISP for discrimination (Strict Priority,
Weighted Fair Queuing).

Few works tackled the problem of detecting differentiation
in mobile networks. A method tailored to wireless environ-
ments is described in [14]. The method is based on the
idea of using a VPN proxy to record a trace of a generic
networked application. The trace is subsequently replayed and
network metrics are compared to the ones collected when
using the encrypted tunnel (and thus in general not subject to
differentiation). The method has been verified using a testbed
which included two commercial products commonly used for
traffic shaping. An implementation of the method is available
for Android-based smartphones. Experimental results showed
the presence of traffic differentiation policies in some mobile
network operators.

BonaFide is a tool for mobile environments able to detect
differentiation on a set of application protocols: BitTorrent,
HTTP, Flash video, Real Time Streaming Protocol, VoIP
H323, Session Initiation Protocol (SIP) [15]. Experiments on
some mobile network operators identified a transient presence
of traffic shaping for SIP.

This paper contributes to exiting literature by assessing the
neutrality of a large set of European mobile network operators.
To the best of our knowledge, this is the first study carried
out after the introduction of EU rules about net neutrality [3].
The Internet is more and more accessed via high speed mobile
technologies, and we strongly believe that a monitoring system
to assess if rules are respected is of paramount importance for
both experts and end users.

III. METHOD

NeutMon is aimed at detecting violations of net neutrality
in the path between two endpoints (a client and a server), in
terms of throughput experienced by different applications. To
this purpose, we implemented a speed test aimed at measuring
the application-level throughput of the connection between the
client and the server. The test is performed in both uplink and
downlink directions (with respect to the client) for two classes
of traffic: BitTorrent traffic (BT) and Random traffic. Random
traffic is used as a baseline, thus hereafter we will use the term
Control traffic (CT).

The speed test implements a data exchange between the
client and the server. In the uplink phase the client transfers
data to the server; in the downlink phase data goes from the
server to the client (if the tested traffic is BT, data is the
content of a file transmitted via BitTorrent; for CT instead,
data is randomly generated). The BT exchange is regulated
by the BitTorrent Protocol Specification [16], which is an
application-level protocol (such as HTTP, FTP, etc.). To obtain
comparable results, BT and CT follow the same pattern in
terms of size and sequence of messages, but the payload of
CT is completely random (i.e. the application-level content is
a string of randomly generated bytes).

In the following we describe the messages exchanged with
BT in the uplink direction (downlink is symmetrical). The
test is made of two phases: i) a preliminary phase, and ii) the



data exchange phase, in which measurements are taken. In the
preliminary phase, client and server exchange messages to set
up the actual data exchange. First, client and server exchange
BitTorrent handshake messages. This phase is initiated by
the server. Handshake messages are needed to identify the
two endpoints of the connection as BitTorrent speakers and
to specify which file one endpoint (the server in this case)
is willing to obtain. Then the client sends to the server an
unchoke message, which informs the server that it is allowed
to send data requests. The server sends back an interested
message (which means that the server is interested to the
client content) that terminates the preliminary phase. The data
exchange phase is started by the server with requests for data
chunks. For each data request the client sends a data chunk.
The payload (i.e. the data portion of a BitTorrent packet) is
randomly generated, as this part of the packet is not used to
identify traffic and possibly differentiate it. The test duration
is configurable and by default it is set to 10 seconds. After
this time the client completes pending data requests and then
sends a choke message, which means that the server is no
more allowed to send data requests. This message terminates
the speed test. The throughput is measured by the server.
Starting from the first data request, each time the server
receives data, it stores the time of arrival and the amount of
data received. This is done for being able to compute instant
and average throughput, and the throughput distribution. As
specified above, the downlink phase is identical to the uplink
phase, but the roles are exchanged.

Both BT and CT speed tests are implemented on top of
TCP. For each traffic direction (uplink or downlink) and for
each class of traffic, the speed test is performed on a separate
connection, i.e. the connection is opened right before the
test for a direction/traffic, and closed right after. Besides the
throughput of the two classes of traffic, the speed test is able
to detect also if a port is blocked or if a given traffic flow
is blocked upon recognition. The complete sequence of tests
is the following. First, the BT uplink (with respect to the
client) traffic is tested on port 6881, which is the default port
for BitTorrent. If port 6881 is blocked, a random high port
is chosen and the test is repeated (some works highlighted
that such port numbers are frequently used by peer-to-peer
applications and thus adopted as classification features [14]).
Then, the CT uplink speed test starts on the same port used
for BitTorrent (6881 or the random high port). The downlink
phase is then run for both BT and CT with the port identified
at the first step (BT uplink).

IV. ARCHITECTURE

As mentioned in the previous section, the tool consists of
a client and a server. The client is executed on MONROE
nodes, whereas the server is executed on a dedicated machine.
Client and server communicate using two channels. One of the
channels is the control channel, which is used to coordinate the
activity between client and server. The other channel is used
to perform tests. More in detail, the control channel is used to
synchronize client and server and to make them communicate

Server Client

Connect

UL BT port: 6881

Uplink BT speed test using port 
6881

Result

UL BT port: random

Uplink BT speed test using 
random port, high number 

Result

If result is not 
OK, the test is 
repeated using 
a different port 
(random, high 
number)

UL CT port: 6881 (or 
random, high number)

Uplink control speed test using 
the specified port

Result
.
.
.

Finish

.

.

.
DL BT port: 6881 (or 
random, high number)

Downlink BT speed test using 
the specified port

Result

DL CT port: 6881 (or 
random, high number)

Downlink control speed test 
using the specified port

Result

Fig. 1: Interaction between client and server

out-of-band for the following operations: i) start of new tests,
ii) transfer of results, iii) aborting measurements (if necessary).

The control channel is established at the beginning of a
measurement session. The server listens for connections using
port 10000 (this is the default port, but another one can be
configured). If the control channel fails, the measurement is
canceled and the server goes back into the listening state. A
control channel is useful because:

• Measurements are carried out in the two directions.
During the downlink phase, results are computed on the
client. During the uplink phase, results are computed on
the server. The client transfers its own results to the server
using the control channel. On the server, all results are
saved onto persistent storage.

• If an ISP blocks BitTorrent traffic (a possible violation
of net neutrality), client and server are still able to
communicate using the control channel. In this case, a
communication block is reported and logged.

The server cyclically operates as follows: i) it creates a
socket and starts accepting connections; ii) when a client
connects, it performs the measurement operations. The server
processes the requests coming from a single client at a time.
This is done to avoid interferences during the measurement
phase caused by cross-traffic and increased load. Clients that
desire to carry out a measurement when the server is busy are
queued, and they will be served as the current measurement
completes. In any case, the server requires a public IP address
or, if the server is located behind a NAT, port forwarding is
required. When all the tests are finished, results are written to
a file in JSON format.

The client is implemented as an infinite loop that is ended
only by a finish or abort message from the server, or if no
control messages are received in a certain amount of time.
When a control message is received, the client starts the
corresponding test and, when finished, sends back the results
in JSON format to the server.

Figure 1 shows the interaction between client and server.



GARR
Network

CLIENT
FIREWALL SERVER

Fig. 2: Validation architecture

V. IMPLEMENTATION ON THE MONROE TESTBED

NeutMon has been implemented to run in the MONROE
platform [6], a mobile broadband testbed including over 400
nodes spread in four European countries (Italy, Norway, Spain,
and Sweden). Nodes are connected to the Internet via mobile
operators. A single node can carry up to two SIM cards of dif-
ferent operators. The total number of available operators is 13.
Table I summarizes MONROE operators grouped by country
(first two columns). The platform includes both static nodes
and mobile nodes installed on trains, trucks, or buses. Nodes
provide operating-system-level virtualization (also known as
containerization). A container is an isolated user-space in-
stance that can see only the resources and devices that the
kernel is assigning to it. This is done for security reasons,
to prevent software executed on nodes from harming the
MONROE platform. To run experiments on MONROE, a user
must build a docker container with installed the experiment’s
software. Then, the container can be scheduled for execution
on MONROE nodes via a web interface.

In MONROE, when an experiment is assigned a time slot
on a node, it is executed in mutual exclusion with other
experiments (on the same node). This ensured that the network
metrics observed by NeutMon were not distorted by cross
traffic generated by other experiments on that node.

MONROE software executed on all nodes provides relevant
contextual information to interested applications. Information
is provided according to a publish-subscribe paradigm. Ex-
amples of published information include the position of the
node, the network the node is attached to, modem events,
etc. NeutMon used this mechanism to collect data that can
be useful to distinguish intentional violations from normal
variability of network conditions (e.g. RSSI).

MONROE nodes run a Debian operating system, and
provide to containers a limited set of resources. To ensure
portability of code on MONROE nodes and speed the imple-
mentation process up, we implemented NeutMon in the Python
language, using only libraries that are available to MONROE
users. The NeutMon code is open source and publicly available
at the NeutMon project website1.

VI. VALIDATION

To validate the proposed tool we ran a measurement
campaign in a controlled environment at IIT-CNR and at
Dipartimento di Ingegneria dell’Informazione of the Univer-
sity of Pisa, using a Palo Alto2 firewall, a tool capable of

1http://vecchio.iet.unipi.it/neutmon/repository/
2https://www.paloaltonetworks.com/

10-2 10-1 100 101 102

Throughput (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

BT
CT

Fig. 3: Throughput CDF for the first run at 02:00 for Vodafone
Italy

performing application recognition via deep packet inspection
(DPI), and blocking, shaping and routing traffic according to
user-assigned policies. The testing architecture was made of
the following three elements: i) a server machine located at
the University of Pisa, ii) a client machine located at IIT-
CNR in Pisa, iii) the Palo Alto firewall located at IIT-CNR
in Pisa. The University of Pisa and the IIT-CNR networks
both run at 1 Gbps speed and are connected via the GARR
network (the Italian research network), which is a high speed
network with links with a capacity higher than 20 Gbps. The
validation architecture is summarized in Figure 2. Since the
tests implementation is the same for uplink and downlink, we
just tested one phase, in particular the uplink phase.

We tested the ability of NeutMon in identifying throttling
on one of the two classes of traffic. We set up the Palo
Alto firewall to shape BT for obtaining a 4 Mbps maximum
throughput (while CT was unlimited). We run the test ten times
to ensure reliability. In each of the ten runs NeutMon measured
a BT throughput of exactly 4 Mbps, while CT obtained a 689
Mbps average throughput. We can thus state that NeutMon
is able to correctly measure the available bandwidth and to
recognize when one of the two traffic is shaped.

VII. RESULTS

We ran an extensive measurement campaign with the 13
operators available in MONROE. For each operator we ran
measurements across a 24 hours period. Measurement sessions
were carried out at four time slots, respectively at 8:00, 14:00,
20:00 and 2:00, to discover possible differentiations applied
only during peak hours. During each session, at least three
runs of the tool were executed. This way, we obtained at
least three results for both BT and CT at each session. Each
run was executed 30 minutes after the previous (e.g., for the
third time slot, experiments were run at 20:00, 20:30 and
21:00). In some cases we had more than three runs (some
experiments partially failed because of runtime problems,
such as connectivity losses, and we had to repeat them).
Experiments were conducted in November-December 2017.



For each run we computed the experimental CDFs of the
measured throughput for both BT and CT, in the downlink
and uplink cases. We found that some cases of differentiation
seem particularly evident even at first sight. For example let’s
consider the CDFs for Vodafone Italy collected at 02:00 shown
in Figure 3. As can be seen, the two CDFs are very distant,
and BT experiences a much poorer performance than CT. In
particular, almost all BT throughput values are less than or
equal to 1 Mbps, while almost all CT throughput values are
greater than 10 Mbps. This suggests the presence of throttling
mechanisms applied to BT traffic. However, in other cases the
difference is not so clear, or there are differences that may have
been caused by network variability rather than differentiation.
For this reason we deepen the analysis with other techniques.

We computed the boxplots of the downlink mean throughput
values obtained by BT and CT by all operators at the different
times (Figure 4). Uplink plots are not shown as they do not add
significant information. Table I summarizes the results for all
operators. In the table we show if the operator is performing
blocking on port 6881, and, if so, which percentage of our
runs were affected by blocking. In addition we highlight the
suspected cases of throttling.

As can be seen, Norwegian operators do not seem to
apply any kind of differentiation. Just in one case, Telenor
(Figure 4e), we can observe that at 14:00 and 20:00 BT obtains
a lower performance than CT. However, we can not be sure
that this is due to the operator’s behavior, it could be caused
also by network variability. In other cases, the performance
of both BT and CT is always good and comparable. In the
other countries at least one operator seems to violate network
neutrality in some way. In Italy, Vodafone Italy and Wind (Blu)
both block traffic on port 6881, and seem to perform some
kind of throttling. Vodafone Italy blocked traffic on port 6881
in all runs except those executed at 02:00. This could indicate
that traffic on port 6881 is blocked only in “working hours”. In
addition, BT traffic on random high port always obtains a very
poor performance (max 0.3 Mbps). CT usually obtains a better
performance, but in some cases obtains poor performance as
well (Figure 4b). However the lack of variability of BT seems
to confirm that its performance is due to shaping. The results
also seem to show that Vodafone identifies traffic with deep
packet inspection, since BT and CT are exchanged between the
same hosts and ports (but CT is not affected). Also Wind (Blu)
performs blocking on port 6881 in some runs. In particular
almost all runs at 02:00 and 20:00. In these runs we also
observed what seems throttling with a very low throughput of
BT and CT. This could happen as some shapers classify traffic
on high ports as peer-to-peer [14], and Wind (Blu) could adopt
such monitoring mechanism, less refined than deep packet
inspection. In Spain, Vodafone Spain shows the same behavior
of Vodafone Italy. This is not surprising, as they are owned
by the same company. Yoigo always blocks traffic on port
6881. In addition, Yoigo seems to throttle both BT and CT
that always obtain an extremely poor performance. Also in
this case differentiation could be based on the port number.
In Sweden, Telenor (Vodafone) blocks traffic on port 6881

TABLE I: Measurement results.

Country Operator Port 6881 blocked Throttling

Italy
TIM 0% None

Vodafone Italy 86.4% BT (sometimes CT)
Wind (Blu) 41.2% BT and CT

Norway

ICE 0% None
Telenor 0% None

Telia Mobile (Norway) 0% None
Telia Norge 0% None

Spain
Orange 0% None

Vodafone Spain 73.9% BT (sometimes CT)
Yoigo 100% BT and CT

Sweden
H3G 0% None

Telenor (Vodafone) 58.3% BT and CT
Telia Mobile (Sweden) 0% None

in 50.3% of cases, mainly in the busiest hours (14:00 and
20:00). Moreover, it seems to perform throttling on both BT
and CT, similarly to Yoigo. It must be noted that Vodafone
always seems to performs some kind of neutrality violation.
In Sweden, Telenor was formerly owned by Vodafone, and
then acquired in 2005. Maybe some practices and policies still
remain today.

VIII. DEMONSTRATION

The experiments described in this paper were executed
on a period of time of two months (November-December
2017). Demonstrating the complete experiment would thus be
unfeasible. The demonstration will instead focus on a single
run. The demonstration will cover all the steps for building the
docker container for NeutMon experiments in the MONROE
infrastructure, and submitting the experiment to MONROE via
the web interface (including the choice of a suitable MONROE
node). In addition we will show the format of JSON files
produced by the NeutMon server and how to analyze them
with the NeutMon analysis tools.

IX. CONCLUSION

Mobile networks have become the preferred choice for
accessing a large number of networked services and applica-
tions, from social networks to video streaming. This trend is
expected to continue in the next few years because of both
technological advancements (e.g. 5G) and regulations (e.g.
those related to roaming in EU). This motivates the need for
additional studies about net neutrality in a wireless scenario.
In this paper we performed a study on 13 European mobile
operators with NeutMon, a tool that helps end users in as-
sessing the neutrality of network operators, via the MONROE
testbed.

This study demonstrates that even nowadays, despite EU
regulations, in three out of four of the considered countries,
at least one major mobile network operator seems to violate
network neutrality. In particular, as far as we know, this is the
first study reporting violations of net neutrality in EU after the
emission of the BEREC guidelines [3] (August 2016).

Future work will focus on implementing NeutMon for other
platforms, such as mobile devices like smartphones or tablets,



02:00 08:00 14:00 20:00
Hours

0

10

20

30

40

50
D

ow
nl

in
k 

[M
bp

s]
BT
Control

(a) TIM (Italy).

02:00 08:00 14:00 20:00
Hours

0

10

20

30

40

50

D
ow

nl
in

k 
[M

bp
s]

BT
Control

(b) Vodafone (Italy).

02:00 08:00 14:00 20:00
Hours

0

10

20

30

40

50

D
ow

nl
in

k 
[M

bp
s]

BT
Control

(c) Blu-Wind (Italy).

02:00 08:00 14:00 20:00
Hours

0

10

20

30

40

50

D
ow

nl
in

k 
[M

bp
s]

BT
Control

(d) ICE Nordisk (Norway).

02:00 08:00 14:00 20:00
Hours

0

10

20

30

40

50

D
ow

nl
in

k 
[M

bp
s]

BT
Control

(e) Telenor (Norway).

02:00 08:00 14:00 20:00
Hours

0

10

20

30

40

50

D
ow

nl
in

k 
[M

bp
s]

BT
Control

(f) Telia Mobile (Norway).

02:00 08:00 14:00 20:00
Hours

0

10

20

30

40

50
D

ow
nl

in
k 

[M
bp

s]
BT
Control

(g) Telia Norge (Norway).

02:00 08:00 14:00 20:00
Hours

0

10

20

30

40

50

D
ow

nl
in

k 
[M

bp
s]

BT
Control

(h) Orange (Spain).

02:00 08:00 14:00 20:00
Hours

0

10

20

30

40

50

D
ow

nl
in

k 
[M

bp
s]

BT
Control

(i) Vodafone (Spain).

02:00 08:00 14:00 20:00
Hours

0

10

20

30

40

50

D
ow

nl
in

k 
[M

bp
s]

BT
Control

(j) Yoigo (Spain).

02:00 08:00 14:00 20:00
Hours

0

10

20

30

40

50

D
ow

nl
in

k 
[M

bp
s]

BT
Control

(k) H3G (Sweden).

02:00 08:00 14:00 20:00
Hours

0

10

20

30

40

50
D

ow
nl

in
k 

[M
bp

s]
BT
Control

(l) Telenor (Sweden).

02:00 08:00 14:00 20:00
Hours

0

10

20

30

40

50

D
ow

nl
in

k 
[M

bp
s]

BT
Control

(m) Telia Mobile (Sweden).

Fig. 4: Downlink throughput for BT and CT at different times.

in order to gather data from a larger number of mobile network
operators. In addition, NeutMon will be extended to also detect
the path traversed by the different classes of traffic, in order to
evaluate if differentiation is also performed in terms of routing.

ACKNOWLEDGMENT

This work is funded by the European Union’s Horizon 2020
research and innovation programme under grant agreement
No. 644399 (MONROE) through the second open call for
projects. The views expressed are solely those of the authors.

REFERENCES

[1] B. Obama, “Net Neutrality: President Obama’s Plan for a Free
and Open Internet,” https://obamawhitehouse.archives.gov/node/323681,
2008, [Online; accessed 4-october-2017].

[2] J. Pil Choi and B.-C. Kim, “Net neutrality and investment incentives,”
RJE, vol. 41, no. 3, pp. 446–471, 2010.

[3] “BEREC Guidelines on the Implementation by National
Regulators of European Net Neutrality Rules,” http://berec.
europa.eu/eng/document_register/subject_matter/berec/download/0/
6160-berec-guidelines-on-the-implementation-b_0.pdf, 2016, [Online;
accessed 6-october-2017].

[4] N. Weaver, R. Sommer, and V. Paxson, “Detecting Forged TCP Reset
Packets,” in Proc. NDSS ’09, 2009.

[5] M. Dischinger, A. Mislove, A. Haeberlen, and K. P. Gummadi, “Detect-
ing Bittorrent Blocking,” in Proc. ACM SIGCOMM IMC ’08, 2008, pp.
3–8.

[6] Ö. Alay, A. Lutu, R. García, M. Peón-Quirós, V. Mancuso, T. Hirsch,
T. Dely, J. Werme, K. Evensen, A. Hansen, S. Alfredsson, J. Karlsson,
A. Brunstrom, A. S. Khatouni, M. Mellia, M. A. Marsan, R. Monno, and
H. Lonsethagen, “Measuring and assessing mobile broadband networks
with MONROE,” in Proc. IEEE WoWMoM ’16, 2016, pp. 1–3.

[7] M. Dischinger, M. Marcon, S. Guha, K. P. Gummadi, R. Mahajan, and
S. Saroiu, “Glasnost: Enabling End Users to Detect Traffic Differentia-
tion,” in Proc. USENIX NSDI ’10, 2010, pp. 27–27.

[8] C. Dovrolis, K. Gummadi, A. Kuzmanovic, and S. D. Meinrath, “Mea-
surement Lab: Overview and an Invitation to the Research Community,”
ACM SIGCOMM Comput. Commun. Rev., vol. 40, no. 3, pp. 53–56,
2010.

[9] S. Basso, A. Servetti, and J. C. D. Martin, “The network neutrality
bot architecture: A preliminary approach for self-monitoring of Internet
access QoS,” in Proc. ISCC ’11, 2011, pp. 1131–1136.

[10] M. B. Tariq, M. Motiwala, N. Feamster, and M. Ammar, “Detecting
Network Neutrality Violations with Causal Inference,” in Proc. ACM
CoNEXT ’09, 2009, pp. 289–300.

[11] Y. Zhang, Z. M. Mao, and M. Zhang, “Detecting Traffic Differentiation
in Backbone ISPs with NetPolice,” in Proc. ACM SIGCOMM IMC ’09,
2009, pp. 103–115.

[12] P. Kanuparthy and C. Dovrolis, “ShaperProbe: End-to-end Detection of
ISP Traffic Shaping Using Active Methods,” in Proc. ACM SIGCOMM
IMC ’11, 2011, pp. 473–482.

[13] ——, “Diffprobe: Detecting ISP Service Discrimination,” in Proc. IEEE
INFOCOM’10, 2010, pp. 1649–1657.

[14] A. Molavi Kakhki, A. Razaghpanah, A. Li, H. Koo, R. Golani,
D. Choffnes, P. Gill, and A. Mislove, “Identifying Traffic Differentiation
in Mobile Networks,” in Proc. ACM SIGCOMM IMC ’15, 2015, pp.
239–251.

[15] V. Bashko, N. Melnikov, A. Sehgal, and J. Schönwälder, “BonaFide: A
traffic shaping detection tool for mobile networks,” in Proc. IFIP/IEEE
IM ’13, 2013, pp. 328–335.

[16] B. Cohen, “The BitTorrent Protocol Specification,” http://www.
bittorrent.org/beps/bep_0003.html, 2017, [Online; accessed 6-october-
2017].


