

MIDP
Push Registry

Push technology

● "Push" is a very powerful concept and typically refers to the
mechanism or ability to receive and act on information
asynchronously, as information becomes available, instead of
forcing the application to use synchronous polling techniques
that increase resource use or latency.

● The Push Registry enables MIDlets to set themselves up to be
launched automatically, without user initiation. The push registry
manages network- and timer-initiated MIDlet activation; that is,
it enables an inbound network connection or a timer-based
alarm to wake a MIDlet up.

● For example, you can write a workgroup application that
employs network activation to wake up and process newly
received email, or new appointments that have been scheduled.
Or you can use timer-based activation to schedule your MIDlet
to synchronize with a server every so often then go to sleep.

The push registry

● The push registry is part of the application management system
(AMS), the software in the device that's responsible for each
application's life-cycle (installation, activation, execution, and
removal). The push registry is the component of the AMS that
exposes the push API and keeps track of push registrations.

MIDlet activation

● The advent of the
push registry
doesn't change
the MIDlet life-
cycle, but it does
introduce two new
ways a MIDlet
may be activated.

Push and AMS

● In MIDP 2.0 the responsibility for push is shared between the MIDlet and the
AMS. Once a MIDlet has registered itself with the push registry, the
responsibility for push processing is split as follows:

– 1. When the MIDlet is not active, the AMS monitors registered push events
on behalf of the MIDlet. When a push event occurs, the AMS activates the
appropriate MIDlet to handle it. The figure illustrates this sequence for a
network activation:

– 2. If the MIDlet is active (running), the MIDlet itself is responsible for all
push events. It must set up and monitor inbound connections, and
schedule any cyclic tasks it needs - basically standard networking and
timer processing.

Static and dynamic registration

● To become push-enabled, MIDlets must register with the push registry,
using one of two types of registration:

– Static Registration - Registrations of static (well known) connections
occur during the installation of the MIDlet suite. You specify them by
listing MIDlet-Push attributes in the MIDlet suite's JAD file or JAR
manifest. The installation will fail if you attempt to register an address
that's already bound. Uninstalling a MIDlet suite automatically
unregisters the connection.

– Dynamic Registration - You register dynamic connections and timer
alarms at runtime, using the PushRegistry API.

● In some cases you may want to register a static connection conditionally,
or to ensure that push exceptions will not preclude your MIDlet suite from
installing. In such cases you can use the PushRegistry API to register your
static connection and catch any IOExceptions or SecurityExceptions
thrown. Typically, however, you'll register a static connection using the
JAD file, and let the system unregister it when the MIDlet suite is
uninstalled.

● Note that, while you can use either method to register inbound
connections, timer-based activation can be registered only at runtime.

Static registration

● Static registrations are defined by listing one or more MIDlet-Push attributes in the JAD file or
JAR manifest. The AMS performs static registration when the MIDlet suite is installed. Similarly,
when the MIDlet suite is uninstalled, the AMS automatically unregisters all its associated push
registrations.

● The format of the MIDlet-Push attribute is:

– MIDlet-Push-<n>: <ConnectionURL>, <MIDletClassName>, <AllowedSender>

 where:

– MIDlet-Push-<n> is the property name that identifies push registration, and where <n> is a
number starting from 1; for example, MIDlet-Push-1. Note that multiple push entries are
allowed.

– <ConnectionURL> is a URL connection string that identifies the inbound endpoint to
register, in the same URL format used when invoking Connector.open(). For example,
socket://:5000 reserves an inbound server socket connection on port 5000.

– <MIDletClassName> is the fully qualified class name of the MIDlet to be activated when
network activity in <ConnectionURL> is detected; for example, mypackage.MyPushMIDlet.

– <Allowed-Sender> is a filter used to restrict the servers that can activate
<MIDletClassName>. You can use wildcards; a * indicates one or more characters and a ?
indicates one character. For example, 192.168.1.190, or 192.168.1.*, or 192.168.19?.1, or
simply *.

JAD example

MIDlet1: PushMIDlet,,mypackage.MyPushMIDlet

MIDlet2: WMAMIDlet,,mypackage.WMAMIDlet

MIDletName: MyMIDletSuite

MIDletVendor: Sun Microsystems, Inc.

MIDletVersion: 1.0

MIDletJarSize: 4735

MIDletJarURL: http://myhost.org/basicpush.jar

MicroEditionConfiguration: CLDC1.0

MicroEditionProfile: MIDP1.0

MIDletPush1: socket://:5000, mypackage.MyPushMIDlet, *

MIDletPermissions: javax.microedition.io.PushRegistry,
javax.microedition.io.Connector.ServerSocket

The push registry API

● The push registry API allows you to register push alarms and connections, and to
retrieve information about push connections. A typical push registry maintains lists of
connection and alarm registrations in both memory and persistent storage.

● The push registry is part of the Generic Connection Framework (GCF) and is
encapsulated within a single class, javax.microedition.io.PushRegistry, which
exposes all the push-related methods.

– static long registerAlarm(String midlet, long time) Register a time to launch the
specified application.

– static void registerConnection(String connection, String midlet, String filter)
Register a dynamic connection with the application management software.

– static String[] listConnections(boolean available) Return a list of registered
connections for the current MIDlet suite.

– static boolean unregisterConnection(String connection) Remove a dynamic
connection registration.

– static String getFilter(String connection) Retrieve the registered filter for a
requested connection.

– static String getMIDlet(String connection) Retrieve the registered MIDlet for a
requested connection.

Registering a timer alarm (1)
● Your MIDlet may be required to perform some cyclic processing every so

often. For example, it may need to synchronize with a server every 5
minutes. Your MIDlet will typically use a TimerTask to schedule a thread for
cyclic processing, as illustrated in the following:

...

// cyclic background task info.

long REFRESH_TIME = 1000*60*5; // every 5 minutes

Timer aTimer = new Timer();

MyTask myTask = new MyTask();

aTimer.schedule(myTask, 0, REFRESH_TIME);

...

class MyTask extends TimerTask {

 // Constructor.

 public MyTask() {

 }

 ...

 // Thread run method.
 public void run() { // ... Your Task Logic }

}

...

Registering a timer alarm (2)

● If your MIDlet needs to continue its cyclic processing even when it's not running, you
can use push alarms to schedule your MIDlet for future execution. To schedule a
MIDlet launch by the AMS the MIDlet invokes the PushRegistry.registerAlarm()
method, passing as arguments the fully qualified class name of the MIDlet to launch,
and the time for the launch. Passing a time of zero disables the alarm. Note that only
one outstanding alarm per MIDlet is supported, and invoking this method overwrites
any previously scheduled alarm.

private void scheduleMIDlet(long delta)

 throws ClassNotFoundException, ConnectionNotFoundException,

 SecurityException {

 String cn = this.getClass().getName();

 // Get the current time by calling Date.getTime()

 Date alarm = new Date();

 long t = PushRegistry.registerAlarm(cn, alarm.getTime()+delta);

}

If the call to registerAlarm() overwrites a previous timer, it returns that timer's scheduled
time; if not, it returns 0.

Registering a timer alarm (3)

● Note that the PushRegistry API doesn't provide a way to discover
whether the MIDlet was activated by an alarm.

● A MIDlet that requires push alarms must schedule them before it
exits:

public void destroyApp(boolean uc) throws

 MIDletStateChangeException {

 // Release resources

 ...

 // Set up the alarm and force the MIDlet to exit.

 scheduleMIDlet(defaultDeltaTime);

}

Registering an inbound connection

 The MIDlet calls
registerConnection() to
register the newly created
inbound (server) socket
connection.

...
// MIDlet class name.
String midletClassName = this.getClass().getName();
// Register a static connection.
String url = "socket://:5000";
// Use an unrestricted filter.
String filter = "*";
try {
 // Open the connection.
 ServerSocketConnection ssc = (ServerSocketConnection)Connector.open(url);
 PushRegistry.registerConnection(url, midletClassName, filter);
 // Now wait for inbound network activity.
 SocketConnection sc = (SocketConnection)ssc.acceptAndOpen();
 // Read data from inbound connection.
 InputStream is = sc.openInputStream();
 // read from the input stream.
 // Here process the inbound data.
 //
}
catch(SecurityException e) { ... }
catch(ClassNotFoundException e) { ... }
catch(IOException e) { ... }

...

 Register the connection now so
that when this MIDlet exits (is
destroyed), the AMS can activate
our MIDlet when network activity is
detected. The AMS will remember
the registered URL even when the
MIDlet is not active.

Unregistering an inbound connection

● Because the AMS maintains the registration even after
the MIDlet exits, it's important that the MIDlet unregister
the connection when it's no longer needed. To
unregister an inbound connection, use the
unregisterConnection() method:

...

try {

 boolean status;

 // unregisterConnection returns false if it was

 // unsuccessful and true if successful.

 status = PushRegistry.unregisterConnection(url);

}

catch(SecurityException e) {...}

...

Discovering whether a MIDlet was push-activated

● The PushRegistry.listConnections() method allows you to discover all
the inbound connections registered by the MIDlet suite. You can also
use it to discover whether the MIDlet was activated by an incoming
connection.

● If you pass false to listConnections(), the method returns a string
array that identifies all the inbound connections registered by the
MIDlet suite, but if you pass a true argument the method reports only
the registered connections with available data - indicating that MIDlet
activation was due to incoming network data .

private boolean handlePushActivation() {

 // Discover if there are pending push inbound

 // connections and if so, dispatch a PushProcessor for each one.

 String[] connections = PushRegistry.listConnections(true);

 if (connections != null && connections.length > 0) {

for (int i=0; i < connections.length; i++)
 PushProcessor pp = new PushProcessor(connections[i]);

return(true);
 }

 return(false);

}

Managing connections
class PushProcessor implements Runnable {

 Thread th = new Thread(this);

 String url;

 String midletClassName;

 public PushProcessor(String url) { this.url = url; th.start(); }

public void run() {
 ServerSocketConnection ssc = null;

 SocketConnection sc = null;

 InputStream is = null;

 try {

// "Open" connection.
ssc = (ServerSocketConnection)Connector.open(url);
// Wait for (and accept) inbound connection.
sc = (SocketConnection) ssc.acceptAndOpen();
is = sc.openInputStream();
// Read data from inbound connection.
int ch;
byte[] data = null;
ByteArrayOutputStream tmp = new ByteArrayOutputStream();
while((ch = is.read()) != 1) {

 tmp.write(ch);

}
data = tmp.toByteArray();
} catch (Exception e){// Exception handling ...}

}
} // PushProcessor

Wireless Messaging
API

WMA

● The WMA is an optional package based on the Generic Connection
Framework (GCF) and targets the Connected Limited Device
Configuration (CLDC). It thus supports JME applications targeted at
cell phones and other devices that can send and receive wireless
messages.

● All the WMA components are contained in a single package,
javax.wireless.messaging, which defines all the interfaces required
for sending and receiving wireless messages, both binary and text.

Message

● The interface javax.wireless.messaging.Message is the base for all
types of messages communicated using the WMA - a Message is
what is sent and received, produced and consumed.

● In some respects, a Message looks similar to a Datagram: it has
source and destination addresses, a payload, and ways to send and
block for a message. The WMA provides additional functionality, such
as support for binary and text messages and a listener interface for
receiving messages asynchronously.

● The WMA defines two subinterfaces, BinaryMessage and
TextMessage, and the specification is extensible, to allow for support
of additional message types.

● How messages (and related control information) are encoded for
transmission is protocol-specific and transparent to the WMA.

● Methods: String getAddress(), Date getTimestamp(), void
setAddress(String a).

Binary and Text Messages

● The BinaryMessage subinterface represents a message with a binary
payload, and declares methods to set and get it. General methods to
set and get the address of the message and get its time stamp are
inherited from Message.

– byte[] getPayloadData()

– void setPayloadData(byte[] data)

● The TextMessage subinterface represents a message with a text
payload, such as an SMS-based short text message. The
TextMessage interface provides methods to set and get text payloads
(instances of String). Before the text message is sent or received, the
underlying implementation is responsible for properly encoding or
decoding the String to or from the appropriate format, for example
GSM 7-bit. General methods to set and get the address of the
message and get its time stamp are inherited from Message.

– String getPayloadText()

– void setPayloadText(String data)

MessageConnection

● The MessageConnection interface is a subinterface of the Generic
Connection Framework's Connection.

● As with any other GCF connection, to create a Connection (in this context a
MessageConnection) call Connector.open(), and to close it call
Connection.close(). You can have multiple MessageConnections open
simultaneously.

● A MessageConnection can be created in one of two modes: as a client
connection or as a server connection. As a client it can only send messages,
while server connections can both send and receive messages. You specify
a connection as either client or server the same way as when making other
GCF connections, by way of the URL. A URL for a client connection includes
a destination address, as in:

MessageConnection mc = (MessageConnection)Connector.open("sms://
+5121234567:5000");

● And a URL for a server connection specifies a local address (no host, just a
protocol-specific local address, typically a port number), as in:
(MessageConnection)Connector.open("sms://:5000");

● Trying to bind to an already reserved local address causes an IOException
to be thrown.

MessageConnection

● MessageConnection provides the methods to create,
send, and receive Message objects:

– Message newMessage(String type)

– Message newMessage(String type, String address)

– Message receive()

– void send(Message msg)

● This interface also defines two String constants,
BINARY_MESSAGE and TEXT_MESSAGE, one of
which is passed to the newMessage() factory method to
create the appropriate Message object type.

Message Listener

● Receiving messages:

– only a server MessageConnection can receive messages;

– to wait for messages you normally dispatch a thread during
initialization;

– this thread invokes receive() on a MessageConnection to wait for
messages.

● Notification of incoming messages:

– The MessageListener interface is used to implement the Listener
design pattern for receiving Message objects asynchronously; that
is, without blocking while waiting for messages.

– This interface comprises a single method:

void notifyIncomingMessage(MessageConnection mc) that is
invoked by the platform each time a message is received.

Message Listener

● To set up a message listener you must perform a number of steps.

1) Define your application (MIDlet) as implementing the
MessageListener interface (public class WMAMIDlet extends MIDlet
implements MessageListener...)

2) Define a notifyIncomingMessage() method within your MIDlet class

you have to minimize the amount of processing within this method
(otherwise, you can create a thread).

3) Register the midlet as the message listener for the server
connection:

...

 // Open the messaging inbound port.

 mc = new MessageConnection("sms://:5000");

 // Register the listener for inbound messages.

 mc.setMessageListener(this); // this is the reference to midlet

...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

