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Abstract— Wrist-worn devices, such as smartwatches and
smart bands, have brought about the unprecedented oppor-
tunity to continuously monitor gait during daily routines.
However, the use of a single wrist-worn unit for gait analysis is
challenging for a variety of reasons. Indeed, the signal collected
at the user’s wrist is subject to a significant “noise” with respect
to other body positions (e.g. waist), mainly due to the arm swing
while walking and other unpredictable hand movements. The
aim of this paper is to investigate the design and evaluation of a
lightweight and reliable gait detection technique for wrist-worn
devices. To this end, the proposed method creates a personalized
model of the user’s gait patterns. The model is created through
an automatic training phase, which requires the temporary
use of an additional device (smartphone) to gather true gait
segments. After, anomaly detection is used to distinguish gait
from other activities. Gait data from 20 volunteers have been
collected to test and evaluate the proposed technique. Volunteers
were asked to walk at different pace, with their normal arm
swing or placing the hand inside of a pocket. Results show
that the proposed method can reliably distinguish gait from
spurious hand movements.

I. INTRODUCTION AND RELATED WORK

Wearable devices equipped with inertial sensors are fre-
quently used for monitoring the physical activity of their
users. The vast majority of these devices is nowadays repre-
sented by smartwatches and wristbands, as they are relatively
unobtrusive and easy to wear.

Collecting movements at the user’s wrist presents several
benefits with respect to previously adopted solutions, which
were based on smartphones generally placed at the user’s
waist (e.g. attached to the belt) or carried in a pocket. First,
wearing a device on the wrist is usually considered more
acceptable [1]. The unobtrusiveness of these systems actually
permits to continuously monitor daily activities and sleep
periods without much hassle. The NHANES program carried
out a physical activity monitoring study on large scale using
wearable devices. Initially, the devices were placed near the
hip, but in subsequent years they were moved to the wrist
as it resulted in higher wear time [2]. In addition, when the
user is at home, the smartphone can be placed elsewhere
(in charging, on a table etc.) instead of being carried by the
user. There are also some categories of users that tend to
bring the smartphone in a bag. A device worn on the wrist
is not affected by these types of problems.

Moreover, recognizing some types of activities can be
easier when using a wrist-worn device, in particular when
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these activities make use of hands. The study in [3] presents a
personalized method for recognizing activities such as shop-
ping, eating, brushing teeth and typing. Another approach,
presented in [4], uses machine learning to identify activities
through a wristband. It confirms that it is possible to achieve
acceptable performance with a wrist-worn accelerometer.
The experiments in [5] demonstrate that, for certain activities
performed in domestic environments, the model based on
data collected by a wrist-worn device provides better results.

Nevertheless, the use of wrist-worn devices also presents
some problems. In particular, due to the lack of a relatively
fixed position with respect to the user’s center of mass, the
recognition of gait can be significantly more challenging than
when using other body positions [6].

The aim of this paper is to achieve accurate gait detection
with a wrist-worn device embedding an accelerometer. More
specifically, we developed a gait detection technique that
is accurate (i.e., spurious hand movements do not lead to
false recognitions, whereas gait is detected as soon as the
user walks a few steps) and lightweight (i.e., it can be
executed in real time in miniaturized devices with limited
resources, enabling continuous monitoring of gait without
hindering battery life). This is achieved through the creation
of a personalized gait model obtained through an automatic
training phase. The training phase requires the use of a
pocket-worn device (e.g. smartphone) in addition to the
wrist-worn device, during the first days of use of the system.
The pocket-worn accelerometer, thanks to a more favorable
position, can help the wrist-worn device in the creation of
a training set that includes examples of the user’s true gait
data. After the training phase, the derived model enables the
wrist-worn device to detect gait with high accuracy.

II. METHOD

The automatic training phase of the proposed approach
is described in Figure 1. As mentioned above, this phase
exploits the availability of a paired device in the user’s
pocket to create a personalized model of the user’s gait
patterns. Both the wrist-worn device (WD) and the pocket-
worn device (PD) run a gait segment detection (GSD)
technique. GSD aims to identify a sequence of consecutive
steps (gait segment) in the acceleration signal. PD takes
advantage of its positioning near the user’s center of mass
to achieve high accuracy in detecting gait segments, and
it can thus pinpoint the starting and ending times of each
walking episode (gait intervals) with high accuracy. On the
contrary, GSD at wrist position tends to capture spurious
hand movements in addition to real gait segments. For this
reason, in the proposed approach PD acts as a “supervisor”
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Fig. 2. Independent gait detection at wrist position

during an initial training phase, in order to support WD in the
creation of a personalized gait model. In fact, WD exploits
PD’s gait intervals to label its own gait segments as gait
or non-gait – only the former are processed (by the pre-
processing and feature extraction module) and added to the
user’s personalized model.

In the second phase (Figure 2), after the training procedure
has been completed, WD uses the personalized model to
autonomously filter out non-gait data and output accurate
gait intervals.

In the following we provide more details about GSD,
feature-extraction, and the personalized filter.

A. GSD technique

Walking (gait) detection algorithms usually rely on the
presence of peaks in the acceleration magnitude signal (for
instance [7]–[9]). Such peaks are generated by the foot
contact at each step. An example of the acceleration mea-
sured during gait at pocket and wrist position is shown in
Figure 3. Steps (foot contacts) are highlighted with stripes
and numbered. In both traces, the diversity of the signal
between consecutive steps is ascribable to the side of the
body where the sensor has been worn – the step made with
the leg closer to the sensor (red/odd number) is marked by
a higher acceleration. Hereafter, we refer to these steps as
dominants, whereas we refer to the steps producing the lower
acceleration as secondaries. In the given example, the two
sensors were placed on the same side of the user’s body,
and thus dominants and secondaries in the two signals are
aligned. The difference in acceleration amplitude between the
two signals is due to the fact that the impact with the ground
is transmitted to the sensor through the body, and since the
accelerometer placed on the wrist is farther from the foot, the
signal is less intense [10]. Also, the presence of arm swing
may further reduce the amplitude of wrist acceleration, and
almost “hide” some of the secondaries.
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Fig. 3. Gait acceleration collected at the waist and at the wrist
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Fig. 4. Gait cycles for dominant and secondary steps

We adapted the algorithm presented in [7] to achieve a
high detection rate at wrist position. That algorithm uses a
threshold on the acceleration magnitude signal to identify
the groups of peaks produced at each step. A gait segment
is detected when the following conditions are met: i) a
minimum number of consecutive steps are found (e.g. eight
steps); ii) a regularity test based on the standard deviation
of step duration is passed; iii) an interval of ∼1 s without
further steps is found, actually terminating the segment.

GSD at wrist was modified as follows: i) the threshold was
lowered to ensure the proper detection of dominants and the
majority of secondaries; ii) the gait cycle detection mode
was introduced to manage the above mentioned problem of
“hidden” secondaries. More specifically, the technique pro-
posed here is able to automatically switch from step recog-
nition mode to gait cycle mode. A gait cycle is composed
of two consecutive steps (Figure 4). Thus, the gait-cycle
period is the interval between two consecutive dominants
or secondaries. The upper and lower bounds of this interval
were found in a reasonable search space, analyzing real gait
segments collected from a number of users. Whenever two
groups of peaks are detected, the algorithm evaluates if they
are separated by a period that falls within the previously
found bounds. If so, the gait cycle mode is activated, and
since a secondary step might have been missed, the algorithm
proceeds by evaluating the regularity of gait cycles instead
of the regularity of single steps. In this way, it is possible
to detect a gait segment even in the presence of a “hidden”
secondary step and preserve the detection rate. On the other
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hand, the algorithm becomes more likely to detect spurious
hand movements, leading to false detections. This specific
problem is addressed by the personalized filter.

B. Pre-processing and feature extraction

This module is aimed at preparing the inputs for the
personalized filter. The procedure is illustrated by the data
flow diagram in Figure 5. A gait segment, identified by
means of GSD, is a sequence of eight or more steps. Sub-
segmentation is used to extract uniform sub-segments with
eight steps. In the example in Figure 5 the gait segment is
made of 18 steps. Hence, two sub-segments are found, while
the last two steps in the segment are ignored. Each sub-
segment is then processed with feature extraction algorithms.
The result is a distinct feature vector for each sub-segment.
Hereafter, we refer to such feature vectors as gait instances
– a gait instance is the input of the personalized filter, and it
is either classified as gait or non-gait. The remaining steps at
the end of the original gait segment are classified according
to the result obtained by the closest gait instance.

During the training phase, pre-processing and feature
extraction are applied only to the sub-segments that are
confirmed as real gait by PD. The resulting gait instances
are added to the personalized model. Non-gait sub-segments
are simply discarded. When training is over, WD is inde-
pendent and each detected segment is processed to find gait
instances. Gait instances, in turn, are classified as gait or
non-gait exploiting the personalized filter described in the
next subsection.

The rationale behind using sub-segments instead of entire
segments as inputs to the personalized filter is twofold: i)
by using sub-segments of eight steps, the system is able
to classify long segments containing gait and non-gait data
with higher accuracy; ii) the use of a predefined and limited
number of steps enables the execution of the method in real
time on devices with limited resources (e.g. microcontroller
class devices with ∼ 16 KB of RAM).

The features extracted from each sub-segment are listed in
Table I. The list includes well-known statistical features such
as mean, median, skewness, root mean square (RMS), and
mean crossing rate (MCR). The average absolute acceleration
variation (AAV) is the average of the absolute variation of
consecutive acceleration samples. It has been previously used
in fall detection and gait analysis [11], [12].

TABLE I
LIST OF FEATURES.

AC C1 AC DP2
AAVy MCRm MCRz

meanx meany meanz
medianm medianx medianz
RMSz skewnessm skewnessy

Autocorrelation-based features are used to evaluate gait
periodicity and regularity. Unbiased autocorrelation coeffi-
cients are found as follows:

ACk =
1

N − k

N−k∑
i=1

ri ∗ ri+k (1)

where ACk is the k-th unbiased autocorrelation coefficient;
N is the number of acceleration samples in the sub-segment;
ri is the i-th acceleration magnitude sample minus the
mean of the magnitude samples in the sub-segment. The
autocorrelation function returns a sequence of autocorrelation
coefficients that have peak values in respect of lags equiva-
lent to the periodicity of the signal. These peak values are
called dominant periods. AC DP1 and AC DP2 describe the
lag of the first and the second dominant periods, respectively.
AC C1 and AC C2 are the normalized autocorrelation coef-
ficients at the first and the second dominant periods. AC C1
and AC DP2 were included in the feature set of the proposed
method.

The autocorrelation features were found on the acceler-
ation magnitude (Euclidean norm). For the other features,
the subscript indicates on which specific input they were
calculated (acceleration magnitude or one of the three ac-
celeration signals corresponding to the reference coordinates
of the accelerometer). Acceleration magnitude is insensitive
to changes in the orientation of the device. In some studies,
where the orientation of the device with respect to the user’s
body is not known in advance and can change during use,
it is essential to rely only on the acceleration magnitude. In
our context, however, the body positioning of a watch-like
device is predictable and it is reasonable to suppose that will
not vary significantly during use.

The selection of the feature set was performed starting
from a larger set with about 40 features. The technique
used for selection was the Correlation-based Feature Subset
Selection method with greedy hill climbing search [13].

C. Personalized filter

The proposed approach to filter out non-gait instances
is based on semi-supervised anomaly detection, where the
training data (i.e., the personalized model) contains labeled
instances only for the normal class. Each gait instance
obtains an anomaly score based on Euclidean distance
and nearest-neighbor analysis. The comparison between this
anomaly score and a threshold enables the classification of
a gait instance as normal (real gait) or abnormal (non-gait,
spurious hand movements).



The set of a user’s gait instances collected during the
training phase is defined as X = {x1, ..., xM} and dist(a,b) is
the Euclidean distance between gait instances a and b. Let
us define the distance of a gait instance g from its nearest
neighbor ng in the training set X as

distmin(g) = dist(g, ng),

ng = argmin
i∈X

dist(g, i). (2)

The mean and the standard deviation of the distances
between nearest neighbors in the training set are computed:

µX =
1

M

M∑
i=1

distmin(xi),

σX =

√√√√ 1

M

M∑
i=1

(distmin(xi)− µX)2.

(3)

These values are used to normalize the distance of the
gait instance to be classified as explained by the following
equation:

ASg =
distmin(g)− µX

σX
. (4)

The result of this normalization is the anomaly score
(AS) related to the instance g. For example if the standard
deviation is 0.3 and the average distance is 1.0, then an
instance having the nearest neighbor at 1.6 will have AS = 2.
Finally, ASth is the threshold used to classify a gait instance
as normal or abnormal, and it is selected by evaluating the
trade-off between filtering out non-gait data and generating
false positives (i.e., filter out real gait) as explained in the
next section.

III. EXPERIMENTAL EVALUATION

For each user, his/her own true gait instances are used to
form the model, while false gait instances (produced with
random hand movements) are used as non-gait examples
(anomalies). The evaluation procedure consists of the fol-
lowing steps:

1) each normal instance of a volunteer is used to estimate
the False Positive Rate (FPR) of a personalized filter
trained on the remaining normal instances (leave-one-
instance-out cross-validation).

2) the True Positive Rate (TPR) of the same filter is
estimated with all the non-gait (abnormal) instances
produced by the same volunteer.

3) FPR and TPR results are averaged over cross-
validation iterations.

In the context of anomaly detection it is common to refer
to anomalies as positive instances. In this application, a pos-
itive is thus a gait instance with non-gait data, which should
be detected and discarded. Therefore, the TPR measures
the proportion of non-gait instances that are identified as
abnormal, whereas the FPR measures the proportion of real
gait instances that are improperly identified as anomalies (in
other words, a real gait instance that is filtered out represents

a false positive for the personalized filter). A high TPR is
key to achieve high gait detection specificity (i.e., non-gait
data are discarded), whereas a low FPR is key to preserve
the high detection rate (sensitivity) of the GSD technique.

For a better understanding and evaluation of the filter’s
performance, it is interesting to present the outcome using
a ROC curve. ROC curves plot the TPR against the corre-
sponding FPR. These two values change in relation to each
other as the detection threshold varies. A typical measure
used to evaluate the overall system performance using a ROC
curve is the Equal Error Rate (EER), which is the point of
the curve having the same (1-TPR) and FPR values.

A. Data collection

For the experiments, we used two Shimmer3 devices,
embedding a TI MSP430 microcontroller (up to 24 MHz
clock, 16 KB RAM, 256 KB flash). Shimmer3 is equipped
with a 10 DoF inertial sensing subsystem, which includes an
accelerometer, a gyroscope, a magnetometer, and a barome-
ter. In particular, the tri-axial accelerometer is an ST Micro
LSM303DLHC. One of these two Shimmer devices was
worn on the wrist using a wrist band (WD), while the
other was put in a front trouser pocket (PD). During the
experiments, acceleration has been sampled with ∼ 50 Hz
frequency. Samples were saved to the Shimmer’s persistent
memory, to ensure repeatable evaluation of methods on
collected data. Traces were transferred onto a PC where
they have been analyzed according to the proposed method.
We also verified that the considered devices can execute
the whole gait detection method in real time. In addition
to acceleration, angular velocity was sampled using the
embedded gyroscope – the study of these samples has been
deferred to future work.

Twenty volunteers were involved in the data collection
campaign (5 females, 15 males, age 26.8 ± 3.6, height
174.2 ± 8.7 cm, weight 68.7 ± 13.3 kg). Volunteers were
asked to walk a corridor six times: two times at preferred
pace, two times at fast pace, and two times keeping the
hand closer to the sensor inside their pocket. In that way,
we were able to collect (at least) three different gait patterns
at two different body positions from each user. At the end of
the experiment, the volunteers were also asked to perform
random movements with their hands, aiming at producing
fake gait detections. The experiments were video recorded
to enable manual labeling of gait and non-gait periods. This
was used to verify the accuracy of PD acting as supervisor.

B. Results and Discussion

We start by evaluating the performance of GSD in terms
of detection rate, i.e. the proportion of real gait data that is
correctly detected as part of a gait segment. The modified
GSD algorithm used in this work achieves an average detec-
tion rate of 95.5%. As a baseline, we compared the results
obtained on the same dataset by the algorithm described
in [7]. The latter, which was designed for a device worn in
a trouser pocket, achieved an average detection rate equal to
88.7%. It is important to consider the worst-case performance
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of both algorithms: the baseline algorithm showed very
poor performance (below 70%) for some users, whereas the
proposed technique detected about 89% of gait data in the
worst case. On the other hand, this improved detection rate
led to detecting at least one non-gait segment for each user
in the dataset.

The core of the method is the personalized filter, which is
aimed at filtering out non-gait data while preserving the high
detection rate achieved by GSD. The ROC curve in Figure 6
depicts the performance of the personalized filter. The ROC
shows the trade-off between TPR and FPR as the anomaly
score threshold is varied. It can be observed that the filter
achieves near perfect accuracy, with an EER of ∼ 0.5% and
an Area Under the Curve (AUC) very close to 1.

In general, the threshold value can be tuned according to
the needs of the specific application for which gait detection
is being used. For example, in some gait analysis applications
it may be paramount to consider only real gait data – in
such scenario a relatively lower threshold is preferable to
maximize the filter’s TPR (i.e., all non-gait instances are
detected). Differently, a simple step detection application
may choose the threshold maximizing the average between
TPR and (1-FPR). In our experiment, this is obtained by
setting the threshold to 5.4. With this setting, the filter shows
perfect accuracy for 18 out of 20 users. The remaining two
users have perfect TPR and a FPR lower than 3%. Thus,
even for these two users the system filters out all the non-
gait data, while the high detection rate of the GSD technique
is nearly preserved.

IV. CONCLUSION AND FUTURE WORK

We proposed a novel method to reliably detect gait activ-
ity with a wrist-worn accelerometer. This body position is
particularly challenging, as hand movements make the iden-
tification of gait cycles more difficult. The method includes
mechanisms aimed at reaching adequate sensitivity levels
without compromises in terms of specificity. The evaluation

was carried out with 20 subjects, who performed supervised
gait experiments in a corridor. Experiments included random
hand movements aimed at producing wrong detections. The
results showed that the method is sound, with an average
Equal Error Rate as low as 0.5%. Furthermore, the method
is sufficiently lightweight to be implemented in miniaturized
devices with limited resources (e.g. microcontroller-class
devices with less than 16 KB of RAM). The personalized
model built with the help of another device, worn during the
training phase at a more favorable position, is key to obtain
such results.

Future work will concern an evaluation of the method
in uncontrolled environment, where users will be monitored
during their habitual activities. We also plan to provide more
details about real-time execution on miniaturized devices
and the related energy consumption. Other aspects that
need further investigation include the use of a gyroscope
in addition to the accelerometer, and the development of
a mechanism to automatically determine when the training
phase can be concluded.

REFERENCES

[1] M. E. Rosenberger, W. L. Haskell, F. Albinali, S. Mota, J. Nawyn,
and S. Intille, “Estimating activity and sedentary behavior from an
accelerometer on the hip or wrist,” Medicine & Science in Sports &
Exercise, vol. 45, no. 5, pp. 964–975, 2013.

[2] R. P. Troiano, J. J. McClain, R. J. Brychta, and K. Y. Chen, “Evolution
of accelerometer methods for physical activity research,” British
Journal of Sports Medicine, vol. 48, no. 13, pp. 1019–1023, 2014.

[3] E. Garcia-Ceja, R. F. Brena, J. C. Carrasco-Jimenez, and L. Garrido,
“Long-term activity recognition from wristwatch accelerometer data,”
Sensors, vol. 14, no. 12, pp. 22 500–22 524, 2014.

[4] M. Gjoreski, H. Gjoreski, M. Luštrek, and M. Gams, “Recognizing
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