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Abstract—The lack of support and the shortcomings of Cloud
computing in relation to pervasive applications can be ad-
dressed through the Sensing and Actuation as a Service (SAaaS)
paradigm. In SAaaS, sensors and actuators, from both mobile
devices and sensor networks, can be discovered, aggregated and
elastically provided as a service according to the Cloud provi-
sioning model. Nevertheless, managing a large set of sensing and
actuation resources, characterized by volatility and heterogeneity,
rises the need for specific mechanisms and strategies.

In this paper we focus on management, abstraction and
virtualization of sensing resources. More specifically, we describe
the lowest level module of the SAaaS architecture, the hypervisor,
that takes care of communication with devices and orchestrates
their resources. The hypervisor operates according to policies and
strategies coming from higher layers, and includes customization
facilities that ease the integration of heterogeneous devices.

I. INTRODUCTION AND MOTIVATIONS

Current ICT trends (Future Internet, Internet of Things, etc.)
envision a huge number of geographically scattered devices,
interconnected through complex and ubiquitous networks.
Along the line, mobile Cloud enforces the involvement of sens-
ing and actuation resources in the Cloud, mainly as endpoints.
In [1] we reversed such perspective, considering sensors and
actuators in the same way as computing and storage resources
are considered in more traditional Cloud stacks: abstracted,
virtualized and grouped in Clouds. We proposed the “Sensing
and Actuation as a Service” (SAaaS), a provisioning model
where (virtual) sensors and actuators are offered as a service,
in an IaaS fashion, to users.

In SAaaS, contributing nodes can be either static or mobile,
“voluntarily” shared by their owners or administrators, thus
they can join and leave the system according to unpredictable
patterns, according to their owners or administrators will.
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Previous research mostly followed a data-driven approach,
where the focus was on the integration of information
produced by sensors with Cloud-based applications, posing
some unneeded restrictions as consumer applications cannot
customize collection/actuation operations according to their
needs. In our vision sensing Clouds should provide virtual
devices that can be manipulated by requesting applications,
not just a representation of the data they produce/consume.

With our device-driven approach, sensing applications have
total control of the allotted virtual sensors and actuators
through their handlers or APIs. For example, a wired/wireless
sensor network (SN) owner whose sensing infrastructure does
not adequately cover a specific area of interest may inquire an
SAaaS provider for additional sensors/actuators. The latter will
provide the requested resources, i.e. virtual sensors/actuators,
that can be incorporated into the requester’s network in a
cloudbursting fashion. The requester can also partially cus-
tomize the behavior of obtained resources, if needed.

This paper describes an architecture that provides the
fundamental mechanisms for abstraction, virtualization, and
management of resources. The proposed solution is designed
to fit within the SAaaS architecture defined in [1], in particular
the SAaaS Hypervisor module. The term Hypervisor has been
used to highlight the analogies between SAaaS and IaaS: a
VMM manages computing resources under the guise of virtual
machines; in the same way the SAaaS Hypervisor manages
virtual sensors and actuators.

In the sensor technology domain virtualization has been
proposed to enable seamless interoperability and scalability
of sensor node platforms from different vendors, with the
insertion of an abstraction layer between the application logic
and the sensor-driver [2]–[4]. Software abstraction layers are
used to address interoperability and manageability issues [5]–
[8], to enable the dynamic reconfiguration of sensor nodes [9],
[10], and fusion of sensor data [11], [12].
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Figure 1. Architectural schema and modules

This paper proposes an architecture that enables devices
to provide their sensors as virtualized instances, possibly
featuring a subset of functionalities of the underlying physical
devices, thus multiplexing concurrent requests for sensing
devices on the same physical one. Another goal consists
in generating brand new resource instances, in the sense of
repurposing (networks of) devices, by means of composition
and aggregation of simpler ones. Additionally, the proposed
architecture includes mechanisms for customizing and contex-
tualizing the sensing resources. To the best of our knowledge
there’s no existing literature addressing the aforementioned
issues from a device-oriented perspective. Indeed, most of pre-
vious research followed the data-driven approach, i.e. exposing
and managing data rather than devices.

II. OVERVIEW OF SAAAS SENSING CLOUD

SAaaS is a paradigm aimed at developing a sensing in-
frastructure based on sensors and actuators from both mobile
devices and SNs, in order to provide virtual sensing and
actuation resources in a Cloud-like fashion. More specifically,
it aims at delivering the basic mechanisms and tools for
enabling a Cloud of sensors and actuators, which have to be
adequately extended and customized by providers in order to
implement enhanced services and provisioning models. To this
end, the main issues that have to be faced include: abstraction
of sensing and actuation resources, virtualization, customiza-
tion, monitoring, SLA and QoS management, subscription
and policy management, enrollment, indexing and discovery,
security and fault tolerance.

This fosters the design of a software stack that implements
the following main functionalities: i) involvement of SNs,
smartphones or other devices endowed with sensors and/or
actuators, and their enablement for interoperation in a Cloud
environment; ii) distributed mechanisms and tools for self-
management, configuration and adaptation of nodes; iii) func-
tions and interfaces for enabling and managing resources that
are voluntarily contributed.

In order to build such ambitious idea, i.e. a Cloud of Sensors
based on the SAaaS paradigm, in [1] we introduced the

whole stack and a rough schema of the architectural modules.
The three main components of the architecture are shown
in Fig. 1, bottom-up: Hypervisor, Autonomic Enforcer and
VolunteerCloud Manager.

The term SAaaS node is used to indicate a smart device
equipped with sensors, such as a smartphone, or a frontend to
a possibly large number of small sensing devices, such as the
gateway of a SN. In other words, in case of relatively powerful
devices, the device itself is the SAaaS node, while, in case of
SNs, the SN gateway is identified as the SAaaS node. SAaaS
mote is instead the elementary hardware block of the sensing
Cloud infrastructure. In SNs, a mote is a programmable sens-
ing board equipped with computing and networking resources,
able to perform processing, routing or storage operations.
With regards to devices such as smart-phones or PDA, the
term is used to indicate the characterization, and possibly
specialization, of the sensors and actuators available on-board.
Through the SAaaS mote concept it is therefore possible to
logically group the sensing resources provided by a device,
thus unlocking a further degree of freedom in SAaaS resource
management. It is important to remark that in Wireless SN
terminology the terms ”node“ and ”mote“ are usually used as
synonyms, but in SAaaS we use them with different meanings.

The lowest block, the Hypervisor, operates at the level
of a single node, where it abstracts the available sensors.
The main duties of the Hypervisor are: communications and
networking, abstraction of devices and capabilities, virtualiza-
tion of abstracted resources, customization, isolation, semantic
labeling and thing-enabled services. These features and the
most relevant issues are discussed in the following section.

The Cloud modules, under the guise of an Autonomic
Enforcer and a VolunteerCloud Manager, deal with issues
related to the interaction among nodes. The former is respon-
sible of the enforcement of Cloud policies, local vs. global
policy tie-breaking, subscription management, cooperation on
overlay instantiation. Whenever possible it operates according
to autonomic principles. The latter is instead in charge of
the following functionalities: exposing the Cloud of sensors
via Web Service interfaces, indexing of resources, monitoring
of Service Level Agreements (SLAs) and Quality of Service
(QoS) metrics.

These layers thus form a coupled, two-level Cloud stack,
where many mechanisms are split in both modules, dealing
with node-wise actions and self-organizing properties in the
lower one, and centrally managed Cloud-wise methods in the
upper one.

III. THE HYPERVISOR

The Hypervisor is the fulcrum of a device-driven approach
to infrastructural Clouds of sensors: it manages the resources
dedicated to sensing and actuation, introducing abstraction
and virtualization functionalities. It operates at the level of
the single SAaaS node, i.e. either an entire SN under the
administration of a single authority, or a standalone/set of
sensors within a device such as a smartphone. As discussed
in Section II, in SNs an SAaaS node may be less easily
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identifiable with respect to the one-to-one relationship we have
for smartphones and other personal devices: we may have a
SN made up of thousands of motes, yet only exposing few
base stations, where nodal components of the Hypervisor can
be deployed, in contrast to the lowest levels of the Hypervisor
for the aforementioned motes.

In order to deal with the above mentioned issues, a modular
architecture of the Hypervisor has been specified. The archi-
tecture, depicted in Fig. 2, identifies four major components:
Adapter, Node Manager, Abstraction Unit and Virtualization
Unit, spanning among nodes and corresponding motes. The
reasons for splitting the Hypervisor between the node (e.g.
gateway/base station) and the motes mainly lies in the require-
ment, embodied by our device-driven approach, to offer near-
complete access to sensing resources. Such splitting is also
a consequence of the autonomic management of distributed
resources (as it is desirable with complex and large SNs).

A. Adapter

At the lowest level of the stack for the Hypervisor lies the
Adapter, a modular diagram of which is depicted in Fig. 3.
As the component of the Hypervisor running at the edge (e.g.
on a mote), the Adapter has a three-fold role.

Firstly, it exposes a standard-compliant (e.g. SensorML)
customer-friendly (e.g. RESTful) Interface to on-board re-
sources. The Observation Agent requests, retrieves and even-
tually pre-processes measurements. The Planning Agent sends
commands to the device for the management of operating pa-
rameters such as duty cycle, sampling frequency, etc. Both rely
on the presence of a platform-specific driver, located within
the Translation Engine, for converting high-level directives
into native commands. Moreover, this approach for interacting
with the underlying resources features isolation as a built-in,

a requirement for proper infrastructure virtualization.
Secondly, the Hypervisor deals with the demand for deep

(provider-induced) reconfiguration of device functionalities by
means of the Customization Engine, an interpreter able to
execute on the sensing device the code needed to tailor the
sensing activities to the specific needs. Let us suppose, for
instance, that the readings provided by a sensor are charac-
terized by some noise and that some form of filtering, such
as median filtering, is needed. The Hypervisor can receive
from the Cloud the specifications of the median-filtered sensor
and the code that transforms the raw readings according to
such specifications. By sending these code fragments, the
client applications running in the Cloud can customize the
sensing (and actuation) process directly on the device. This
makes possible the customization of the sensing activities
according to unforeseen criteria, e.g. to compress the data
before sending them to the Cloud and thus saving bandwidth
and energy. The same approach is followed to add new sensing
functionalities on a device. To provide an additional example,
let us suppose that a client application needs a sensor that
detects human presence and that presence can be inferred
by properly combining the level of sound registered by the
microphone and movement acquired through accelerometers.
In such case, a new virtual presence sensor can be realized
by uploading onto the device a document containing both the
description of the new sensor and the set of operations that
have to be performed on sound and acceleration values to
obtain the desired results. Then the new presence sensor is
also going to be registered into the Cloud indexing service.
At last, the Adapter takes care of managing the whole set of
devices inside a domain according to an autonomic approach.
This enables power-driven self-optimization and other self-
configuration mechanisms (e.g. networking). To this purpose,
the elements of the Adapter located on the base station
cooperate with the Mote Manager, which is executed on the
mote-side. Given the widespread and cheap availability of
smart boards for motes, pushing intelligence to the edge of the
SN is easy to achieve. In any case, dumb sensing platforms
could still be considered for inclusion through adequate proxy-
based mechanisms. The Planning Engine is responsible for
the interaction between customers and the Mote Manager,
driving contextualization requests over virtualized resources
only through the restricted subset of available customization
actions exposed by the Customization Engine. Dealing with
networking issues is out of the scope of this work, yet world-
wide addressing and application-level communications are
either partially solved issues (e.g. Cloud2Device messaging)
or pertinence of standardization efforts (e.g. ETSI M2M). In
terms of security, among the issues to be tackled in future
efforts, remote attestation of motes is of particular importance.

Moreover, meta-data processing within the volunteer Cloud
must respect privacy of any personal trails that are related
to virtualized nodes. This requirement must hold even if this
kind of data is not managed by the volunteer Cloud, but is just
passed along, from the device to the customer. All of the above
holds true also with smartphones, with the obvious difference
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that being there one board/platform only per mobile, there
would be just one Adapter correspondingly.

Our research team has started addressing the lowest com-
ponent of the Hypervisor, the Adapter, with additions to an
in-house developed IaaS stack, characterized by a flexible
approach to inter-node/Cloud communication and event noti-
fication [13], a fork planned to work over a common baseline,
having chosen the TinyOS and Contiki open source platforms.

B. Node Manager

The Node Manager is in charge of sensing resource opera-
tions, as well as enforcement of policies, just at node level.

In particular, the Policy Coordinator takes care of resolving
conflicts between the set of Cloud-wise policies and local
ones (e.g. imposed by the owner or the administrator). The
Policy Driver implements the actual enforcement of sensing
and actuation policies as relayed by the Coordinator. Policies
are translated into rules to be applied on combos coming from
other modules (in detail, the Planning Aggregator inside the
Abstraction Unit), as well as into constraints to be enforced
on power self-tuning activities. Moreover, here is where user-
mandated policies on resource management get stored.

These node-level policies and strategies are then enforced at
the mote-level through the Policy Driver. In particular, on the
mote side, policies are receipt by the Adapter’s Mote Man-
ager which, as mentioned, operates according to autonomic
principles. In other terms, the coordinator elaborates policies
and strategies that are either enforced by the driver if they do
not involve motes, or deployed by the driver into the motes
and enforced by the corresponding Mote Managers in a self-
managing, autonomic fashion.

The Node Manager can also (optionally) include a Monitor-
ing System that, in collaboration with the Adapter Observation
Agent, provides historical data and statistics. This provides
the opportunity of evaluating the effectiveness of runtime
strategies. This information can be also provided to higher
level modules, such as the Observation Aggregator of the
Abstraction Unit described below.

C. Abstraction Unit

At a very basic level, the Abstraction Unit replicates plan-
ning and observation facilities modeled after those featured
in the Adapter but on a node-wide scale, combining the pool
of resources of the whole SN or smartphone, as shown in
Fig. 5. The Observation Aggregator exposes the set of node-
wide resources, and the Planning Aggregator manages this set,
sending combos, i.e. combination of commands, and tracking
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Figure 5. Abstraction unit modules.

exit codes, eventually reacting to (partial) failures by triggering
apt adjustments.

At the bottom lies the Resource Discovery module, which
offers an interface to the motes, actively gathering descriptions
of underlying resources and forwarding the results to the
Aggregator modules.

Finally, the Customization Manager acts as an orchestrator
for the customization engines located on the motes. In fact,
depending on the type of customization, the code is executed
on the SN gateway or on the remote nodes. In more detail,
customization is carried out on motes when such activity is
compatible with their HW limitations, e.g. when computing
median-filtering, calibration, or simple forms of compression,
whereas customization is executed on the gateway when it
requires the output of multiple sensors or when a substantial
amount of computing power is required.

If the observations produced by sensors are encoded using
an XML-based dialect, such as Observations&Measurements,
then customization could be based on XML extensible
stylesheet language transformations (XSLT). XSLT is a lan-
guage for transforming XML documents into other XML ones.
In the XSLT language, a transformation is expressed in the
form of a stylesheet, a well-formed XML document, and it is
executed by an XSLT processor. It has also been demonstrated
that XSLT is a Turing-complete language. In the context of the
SAaaS architecture, XSLT can be used by client applications
to specify the customization actions that the application needs
to execute on the enrolled sensing devices. If an application
wants to perform some noise reduction on a given sensor, the
former may prepare an XSLT document that implements, for
instance, filtering by computing the average. Then the XSLT
document is transferred onto the node, where it is consumed
by the Customization Manager.

Since transformations are expressed as XML documents,
the developer of the client application is not forced to use
some programming language. Moreover, code transformations
are portable across different architecture and implementation
of sensing devices, as long as a XSLT processor is available
for such configuration. Implementation of a XSLT processor
is possible on resource-rich devices, e.g. smartphones. For
resource-constrained devices, XSLT transformations can still
be operated on the node (SN gateway). However, the Cus-
tomization Manager may decide to push part of the customized
processing out to motes. In this case, the Customization
Manager should isolate specific portions of code and send
them to its slaves. Given the constraints imposed by the limited
resources available, mote-side customization may not be based
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on portable code and should then be adapted to the specific
hardware and software platform. For example if the mote is
based on TinyOS, customization can be implemented through
Adaptlets [10], small code fragments to be executed on motes
by an application adaptation layer.

D. Virtualization Unit

In Fig. 6 we have the modules belonging to the Virtual-
ization Unit, whose core activity is slicing, i.e. generating
possible partitioning schemes for the cluster of resources
exposed by the Abstraction Unit. These partitioning schemes
can be subsequently ranked according to a number of criteria
including sensor provenance, proximity, QoS, security and
so on. In detail, slicing and ranking are carried out by the
Partitioning Interface. We believe that this is quite a novel
theme in this context, not featured in classic IaaS.

Note that matching between customer requests and avail-
ability of resources is operated by the VolunteerCloud Man-
ager. The latter takes arrival order, pre-existing choices and
other constraints into account, together with the slicing regen-
erated at every occurrence of triggering events such as addition
or removal of sensing infrastructure.

The Repurposing Unit provides a wider variety of virtual
sensors with respect to the underlying resources. This involves
choosing certain slicings with specific sets of devices, or
computing transformations on measurements, to shape the
functionality the node exports. The result is a set of sen-
sors/actuators in the widest possible meaning. For example
a weather sensor, can be offered by combining other simpler
sensors such as temperature, pressure and humidity. Repurpos-
ing can be pushed further, e.g. a camera with motion detection
software to replace missing positioning sensors.

At last, we envisioned the Instance Monitor as the upper
building block of the Virtualization Unit, named after the
Virtual Machine Monitor to highlight its role as a manager of
the lifecycle of virtualized resource instances. This includes
APIs and functionalities for virtual instance creation and
reaping, as well as for boot- (defined statically) and run-time
(dynamically) parameters discovery and tuning in accordance
to contextualization requests.

IV. CONCLUSIONS

The idea of combining sensing resources and Cloud infras-
tructure is as appealing as it is challenging. SAaaS aims at
bridging the gap between sensing (and actuation) pervasive
scenarios and service-oriented provisioning models. At the
lowest level of the SAaaS stack, the Hypervisor allows to

manage, abstract and virtualize sensing and actuation resources
that could be provided by enrolling either mobile devices or
SNs, in a volunteer contribution fashion. This paper provides
an architectural solution covering several unique features of
the SAaaS Hypervisor, including customization facilities for
adapting physical resources to their virtual instances .
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