
A smartphone-based fall detection system

Stefano Abbatea, Marco Avvenutia, Francesco Bonatesta, Guglielmo Colaa, Paolo Corsinia,
Alessio Vecchioa,∗

aDip. di Ingegneria dell’Informazione, University of Pisa
Largo L. Lazzarino 1

56122-Pisa, Italy

Abstract

Falls are a major cause of injuries and hospital admissions among elderly people. Thus, the
caregiving process and the quality of life of older adults can be improved by adopting systems for
the automatic detection of falls. This paper presents a smartphone-based fall detection system
that monitors the movements of patients, recognizes a fall, and automatically sends a request
for help to the caregivers. To reduce the problem of false alarms, the system includes novel
techniques for the recognition of those activities of daily living that could be erroneously mis-
detected as falls (such as sitting on a sofa or lying on a bed). To limit the intrusiveness of the
system, a small external sensing unit can also be used for the acquisition of movement data.
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1. Introduction

A fall event is one of the main factors that influence the physical and psychological health
of an elderly person. Injuries related to falls include physical damages like skin abrasions, bone
fractures and general connective tissue lesions [1, 2]. A fall has also dramatic psychological con-
sequences, since it drastically reduces the self-confidence and independence of affected people.
This may contribute to future falls with more serious outcomes or it may lead to a decline in
health. Other frequent consequences include early nursing home admission and continuous fear
of falling, lowering the quality of everyday life [3]. The consequences of a fall event depend also
on the long-lie period, i.e. the time interval during which the person remains involuntarily on the
ground after the fall [4]. Therefore, it is of fundamental importance to provide quick support to
the injured people as soon as a fall happened.

The simplest solution to the fall detection problem consists of providing people with a Per-
sonal Emergency Response System (PERS), a small, light-weight and battery-powered device
with a “help” button that can be carried on a belt, in a pocket, on a necklace or on a wrist band.
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This kind of device also embeds a radio transmitter which is able to connect to the user’s home
telephone and to dial preselected numbers in case of emergency. Many of these systems have
been successfully deployed in several countries and require almost no configuration [5]. How-
ever, they suffer from a major issue: the need for the user to press a button. Unfortunately, it
is common that after a fall a person is unable to perform even this simple action, for example
because of a loss of consciousness or because the final lying position could prevent the victim
from being able to reach the button.

Thus, in the last few years, research about systems for the automatic detection of falls gained
momentum, pushed by the growing number of elderly citizens in a large fraction of the world [6,
7, 8, 9, 10, 11]. The techniques for the automatic detection of falls can be substantially divided
into two categories [12]. The first category includes the approaches based on instrumenting the
environment; examples include equipping rooms with cameras able to track the movements of
people or placing pressure sensors in specific areas (e.g., in the vicinity of beds). The second
category includes techniques based on wearable sensors: accelerometers and/or gyroscopes are
used to collect kinematic information about the monitored person and then to detect falls. The
advantage of using wearable sensors is that almost no installation or set-up is required and the
system is immediately available for deployment. Moreover, the area of operation is not limited
to the instrumented spaces as the system can be carried by users wherever they go. This enlarges
the number of users and situations, ideally including all the activities that expose people to long
periods of being alone with a high risk of falling. Nevertheless, the user is required to wear at
least a device and this can pose some intrusiveness and usability concerns. In other situations,
automatic fall detection can be integrated within the monitoring system dedicated to specific
pathologies [13].

Many automatic fall detection systems suffer from the problem of false alarms, caused by
some fall-like activities of daily living (ADLs), such as sitting on a sofa or lying on a bed. For
this reason, in our approach to fall detection we devoted a special attention to the study of the ac-
celeration signal produced by fall-like ADLs and to the design of novel filtering techniques [14].
In this paper, we describe the design rationale and the implementation of a fall detection sys-
tem based on wearable sensors. The system relies on commercially available smartphones and
is capable of automatically sending an alarm message to the caregivers in case of fall. The ac-
quisition of kinematic data can be carried out either using the accelerometer available on many
smartphones or using an external sensing unit. The usability of the system has been confirmed
by a set of interviews with some aged people, while its performance, in terms of precision and
recall, has been evaluated both in lab sessions and through continuous monitoring of three sub-
jects (including indoor and outdoor activities). A comparison with similar existing fall detection
techniques is also reported.

2. System design

2.1. Requirements and architectural guidelines

A fall detection system can be useful for people working or doing recreational activities in
isolated places with high risk of falls, such as country workers, mushroom hunters, or skiers.
However, the category of people that can benefit more significantly from a fall detection system
is the one of elderly. In fact, in the last years life expectancy has increased making a larger
fraction of the population more prone to falls. Unfortunately, the injuries due to falls are a major
cause of hospitalization, disabilities and even deaths for elderly people.
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Thus, the target user of our fall detection system is an elderly person who frequently turns
out to be alone for an extended period of time. An effective fall detection system for such users
must address the following requirements: automation, to be able to send an alarm without the
need for the user to press a button; promptness, to provide quick help and avoid worsening of
health condition; reliability, concerning the capability of detecting fall events while filtering fall-
like ADLs; communication, in order to be always connected and able to alert the care givers,
relatives or friends; usability, for facilitating users’ acceptance.

We argue that, in order to fulfill the mentioned requirements, a fall detection system should
be designed based on the following guidelines:

1. Detection of falls should be carried out using only acceleration-based information. Previ-
ous work demonstrated that acceleration is the most reliable information that can be used
in detecting a fall, while other kinematic data, such as angular velocity, is less relevant [15].

2. Usability is strongly influenced by the number of wearable sensors and by their placement
on the user’s body. For this reason, detection should be performed using a single sensor.
Waist and head provide the most relevant acceleration data for the purpose of fall detec-
tion [10]. However, waist represents the most comfortable position for the user. Also,
placing the accelerometer at the waist, close to the center of gravity of the user’s body,
makes the sensor less sensible to spurious movements.

3. Some fall detection systems use posture information to improve their precision [11, 16, 17].
Posture can be calculated either assuming a known orientation of the axes of the accelerom-
eter with respect to the user’s body, or using two or more sensors. As both approaches
reduce the usability of the system, solutions that do not need posture information should
be preferred.

4. Still for usability reasons, the fall detection algorithm should work only with the magnitude
of acceleration and not with the values along each of the three accelerometer’s axes, as this,
again, would require a known and fixed orientation of the device with respect to the user’s
body.

5. The fall detection algorithm has to be self-learning; in this way, it can automatically adjust
the parameters of operation according to the specific characteristics of the user (height,
weight, movement speed, etc.).

6. A human-machine interface, even if rudimentary, is mandatory for two reasons: i) a stop
button is necessary to avoid sending a request for help in case of false alarms; ii) to provide
a feedback to the self-learning detection algorithm.

A wearable device with a small form factor seems to adhere to such guidelines. To allow
the system to operate outdoors, even far from any building, communication should rely on the
existing cellular network. Clearly, smartphones are good candidates: they are now an effective
computing platform and include a variety of sensing subsystems, such as accelerometers and
gyroscopes (normally used to manage the orientation of the screen and to use the position of the
device as a form of input). At the same time, providing a new functionality, such as fall detection,
through a familiar device would greatly facilitate an extensive deployment of the application.

We designed and implemented a fall detection system that satisfies the given requirements by
using a smartphone attached to the user’s belt. An application, with self-learning properties, con-
tinuously collects acceleration data through the built-in accelerometer, applies the fall detection
algorithm, and sends an alarm to a set of predefined contacts when a fall is detected. Interaction
between the user and the application takes place using the standard phone interface.
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Questions

Gender and age of the interviewee.
How do you judge the project’s usefulness and benefits?
Do you already own a smartphone? How do you use it?
How do you rank the usability of the smartphone plus external unit solution?
Would you prefer a solution where only the external sensing unit is used or a solution based only on a smartphone?
In the latter case, would you be annoyed if you were obliged to hang the smartphone on your belt?
Do you feel intrusive and/or difficult to use the request for suggestions in case of false alarm?
Would you prefer a completely automatic solution?

Table 1: A small survey

A smartphone-based solution still has some drawbacks: not all the smartphones embed an
accelerometer and, even if it is available, it may be not adequate for the fall detection purposes
(3 axes, acceleration range ≥ ±4g , sampling rate ≥ 50Hz). Moreover, a usability obstacle must
be considered: not all the people carry their mobile phone in a fixed position or wish to wear a
device of the size of a smartphone; they would rather carry a small and non invasive sensor, more
versatile and easy to wear, being free to put their smartphones wherever they want.

To address the above issues, we added the possibility of collecting acceleration data also
through an external accelerometer. The external sensor must be placed at the user’s waist and
communicates wirelessly with the smartphone (via Bluetooth), where data is elaborated. This
way, the user can carry the smartphone wherever he/she wants, with the only constraint of keep-
ing it within the radio communication range.

2.2. End users interview
As discussed in the previous section, usability is a critical design issue of a wearable fall

detection system. Even the most reliable algorithm can be useless if the overall system does
not address the users’ acceptance of a number of issues like ease of use, perceived effectiveness,
privacy, cost.

A common and effective methodology to evaluate a system’s usability is by interviewing
end-users. To evaluate our approach, we showed a prototype of the system to a small group of
people, 6 men and 4 women between 60 and 82, and we asked them to judge its usability. The
survey focused on the users’ reaction to a wearable system and their willing to use it in daily life.
Also, the users’ confidence with technology and their preferences about the proposed solutions
were investigated, together with the problem of sensor positioning. Lastly, the users’ need for
interactivity and feedback was analyzed.

After a briefing about the project and a simple demonstration using the smartphone and the
external sensing unit, the questions listed in Table 1 were posed to the interviewees. Despite the
small size of the sample group, the following considerations emerged quite clearly:

• All the interviewees agreed on the benefits and importance of an automatic fall detection
system. Some of them also reported about injuring falls occurred to close relatives, which
seriously affected their quality of life, because of late arrival of medical teams. All inter-
viewees owned a mobile phone, most of them using it for both voice and text messages.

• Men consider comfortable wearing a device on their belt. They like having the possibility
of switching between the external and the built-in sensor depending on the situation. For
example, while at home they would prefer to wear a small sensing unit rather than a fully
fledged mobile phone. But sometimes, especially outdoors, carrying just a single device
may be easier, even if it is needed to place it on one’s belt.
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• On the contrary, women do not consider comfortable the idea of wearing a device on their
belts, for the evident reason that they seldom use belts. However, they found reasonable
the idea of attaching a small sensing unit to an elastic band and place it at the waist under
their dresses. Also, the sensor would be invisible, thus improving the users’ privacy.

• As far as the user interface is concerned, interviewees unanimously agreed on the need of
having a button to prevent false alarms. Also, they expressed the opinion that interacting
with the system, with the purpose of giving feedback, is a small burden if compared with
the advantage of increasing the user’s confidence and trustworthiness on a continuously
updated system.

As a final remark, even though the small size of the sample group did not allow us to draw
general conclusions with high confidence, the replies received from the interviewees were def-
initely of great help in identifying users’ requirements and wishes. Some related studies are
reported in Section 7.2.

2.3. Basic fall detection

In our system, a fall-like event is defined as an acceleration peak of magnitude greater than 3g
followed by a period of 2500 ms without further peaks exceeding the threshold. The accelerom-
eter sampling rate has been set at 50 Hz, a tradeoff between resolution and power consump-
tion [18]. Threshold values around 3g (in general, ranging from 2.5g to 3.5g) have been widely
used in other fall detection systems [8, 11]. The 3g value is small enough to avoid false negatives,
since real falls are likely to present an acceleration pattern containing a peak that exceeds such a
value.

After a fall, the unfortunate usually remains lying on the ground. According to our exper-
iments, in case of fall the body becomes inactive by 1000 ms after the peak that exceeds the
3g threshold. Such an interval is due to the fact that the first peak is usually followed by other
smaller peaks generated by different parts of the body impacting the ground at subsequent times.
During inactivity, the acceleration magnitude is stable around 1g.

Based on this consideration, a simple Activity Test can be performed to avoid some false
alarms: a fall-like event is discarded if the acceleration magnitude reveals a significant body
activity starting from 1000 ms after the first peak. The Activity Test can be safely performed in
the [1000, 2500] ms interval after the first peak. A possible implementation of the Activity Test
is discussed in Section 4.3.

This basic fall detection technique can achieve up to 100% sensitivity. Unfortunately, some
ADLs can produce peaks exceeding the 3g threshold, followed by a period where the person is
almost inactive. Examples of such activities include: sitting on a sofa, lying on a bed, walk-
ing/running followed by a stop, or simply unintentionally hitting the sensor with a hand or a bag.
In all these cases, basic fall detection is likely to confuse the event with a fall, leading to a great
number of false positives.

In order to further reduce the number of false alarms, we built a classification engine that
considers a fall-like event as a real fall only if its pattern does not correspond to the typical
patterns of the most common ADLs. This approach was suggested by experimentally observing
that the acceleration traces of several ADLs have more regular patterns than falls. Intuitively, this
is due to the fact that such events originate from controlled movements, thus different individuals
produce similar patterns and different iterations show little variations. On the contrary, trying to
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recognize falls is more difficult, as it is an ill-defined process and a thorough description is not
easy to achieve [14].

In the end, we identified a set of fall-like activities and we noticed that they are characterized
by consistent acceleration-based properties. The classification engine receives as input the data
corresponding to a fall-like event and produces as output a membership value for each of the
different ADL classes and one membership value for the class of falls. This is achieved using soft
computing techniques to make the system resilient to the variations introduced by the different
executions and the individual body characteristics. If one of the memberships associated to the
ADL classes is higher than the membership associated to the Falls class, the fall-like event is
considered as a normal ADL and the alarm is not raised.

3. Implementation

This section describes the hardware platform used to build a prototype of the system and the
software running on the smartphone and on the external sensing unit when provisioned.

3.1. Hardware
We implemented the system using a HTC Google Nexus One smartphone, which features

hardware characteristics suitable to our purpose. This smartphone embeds an accelerometer
(BMA150 by Bosch Sensortec) which provides 3-axial measurements in the ranges±2g/±4g/±8g.

A Shimmer2 wireless sensor, produced by Shimmer Research [19], has been selected as the
external sensing unit. This device incorporates a 3-axis accelerometer (MMA7260Q by Freescale
Semiconductor) which provides measurements in the ranges ±1.5g/±2g/±4g/±6g per axis. The
Shimmer Platform also features a 3-axis gyroscope but, given its high current drain and the small
benefits that can be achieved by measuring the angular velocity, it has not been used for our
purposes [20]. The device includes 802.15.4 and Bluetooth radios. The latter has been used for
communication with the smartphone.

3.2. Software
The software on the smartphone side runs on top of the Android operating system, while

the software running on the external sensing unit has been written using the TinyOS/nesC plat-
form [21].

3.2.1. Sensing process
The sensing process can be described as a finite state machine (shown in Figure 1). Initially,

the machine stays in the Sampling state until a threshold peak is detected (acceleration magnitude
≥ 3g). After that, the machine moves to the Post-peak state and starts waiting for a bouncing
timer of 1000 ms, during which no further threshold peaks must be seen.

When the bouncing interval is elapsed, the machine moves to the the Post-fall state and starts
a post-fall timer of 1500 ms. During this interval, the detection of a new threshold peak makes the
machine return to the Post-peak state. When the post-fall timer fires, the Activity test introduced
in Section 2.3 is performed. If the event does not pass the test, i.e. there is a high level of
body activity immediately after the supposed fall, the event is considered a false alarm and the
system returns to the Sampling state. Otherwise, the detection of a fall-like event is signaled to
the application.

The sensing process is executed either on the smartphone or on the external sensing unit,
depending on the adopted configuration.
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Figure 1: Sensing process as a finite state machine

3.2.2. Smartphone
On the smartphone side, the application is made of four major components: Background

Service, Classification Engine, Notification System and Graphical User Interface.
Background Service. The monitoring service runs in the background. Data coming from

the sensor, either internal or external, is forwarded to the Classification Engine, which in turn
classifies the event as a fall or as an ADL. If the external sensing unit is used, the service takes
care of starting the communication and of handling connection losses. If the event has been
classified as a fall, the service invokes the Notification System, which informs the user about
the detected fall. The user can stop the notification if a false alarm occurred. In addition, the
Background Service periodically gets a location fix from the phone’s GPS antenna or cellular
network and passes it to the Notification System when a fall occurs.

Classification Engine. Whenever a fall-like event is detected, the Background Service ac-
tivates the Classification Engine providing it with the array of acceleration data related to the
fall-like event. For the event, the Classification Engine calculates a membership value to the
ADL classes and to the Falls class. The classification method is described in the next section.
If the membership value corresponding to the Falls class is greater than all the membership val-
ues related to the ADL classes, then the fall-like event is classified as a fall and the Notification
System is started. Otherwise, the fall-like event is considered as a false alarm and discarded.
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(a) Stop button (b) Suggestions screen

Figure 2: Notification screenshots

The Classification Engine is also in charge of receiving feedback from the Notification System
to improve the classification accuracy.

Notification System. The Notification System is responsible for alerting the caregivers when-
ever a fall is detected. Each time a fall-like event is classified as a real fall by the Classification
Engine, an acoustic alarm is emitted continuously for 30 seconds. At the same time, a notifi-
cation appears on the Android’s notification bar and a foreground screen is shown. The screen
simply contains some informative text and a flashing “stop” button (Figure 2(a)), that can be used
to deactivate the alarm. If the user does not deactivate the alarm by a given time, the stop screen
is dismissed and a text message is sent to one or more specified contacts. The message con-
tains basic details about the event and information about the last known location. If the “stop”
button is pressed, the user can provide some feedback to the Classification Engine. Through
another screen, shown in Figure 2(b), the user specifies the type of activity that raised the false
alarm. When any of these buttons is selected, the acceleration pattern is archived together with
information related to that event.

Graphical User Interface. As shown in Figure 3, the user interface is made of two tabs. The
first tab shows status information about the Background Service and provides a way to start/stop
it. It also shows information about the last location, time and date, if available. The second tab
provides a way to set up all necessary system settings. The most important options are: Start up
at boot, to autostart the system when the phone is turned on; Sensor, lets the user switch between
the internal and the external sensor; Bluetooth sensor, provides a screen for selecting an external
sensing unit; Alarm duration, set the time available for stopping an alarm before sending the
request for help (default 30 seconds); Contact numbers, to enter the phone numbers to alert in
case of fall (contacts can be added, deleted, modified or selected from the main list of the phone);
Alert text, content of the message sent in case of fall; Send location, location information can be
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(a) Status tab (b) Settings screen

Figure 3: The Graphical User Interface

appended to the text message; Improve system, if the user wishes to give suggestions after a false
alarm.

3.2.3. External sensing unit
The software running on the external sensing unit manages the communication with the

smartphone and takes care of the sensing process. When a fall-like event is detected, the soft-
ware running on the sensing unit checks the connectivity status and, if a connection is already
established, it sends the relevant data to the smartphone. In case of communication errors, the
anomalous status is signaled by using a led. When the communication is successfully completed,
the application re-enters the Sampling state.

It should be noted that the Activity Test can be executed on the external sensing unit rather
than on the smartphone. This way, a large number of events can be discarded by the sensing
device itself, thus reducing the amount of communication with the smartphone and improving
the battery lifetime. Other power saving techniques can be put into operation in case of excessive
consumption due to communication [22, 23]. Customization of the sensing process could also
be achieved through specific techniques [24].

4. Detection of real falls and filtering of fall-like ADLs

The building blocks of the classification engine are shown in Figure 4. As said in the pre-
vious section, fall-like events that are not discarded through the Activity Test are forwarded to
the Classification Engine. The input to the engine is a vector of acceleration magnitude values
collected in the interval [−2200, 1000] ms, centered at the instant of the peak exceeding the 3g
threshold. These values are fed into a Feature Extractor whose task is to reduce the number
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Figure 4: The Classification Engine

of the input values. This is carried out by taking advantage of domain knowledge in order to
cut away unnecessary information. In our case, we used eight features that characterize fall-like
events originated from ADLs. The Pattern Classifier takes such values and returns a membership
value for each ADL class and the Falls class. Finally, the event is associated to the class with the
highest membership.

The conceptual borderline between feature extraction and pattern classification is somewhat
arbitrary. In fact, a perfect feature extractor would produce features that are directly membership
values, or values from which the desired output can be trivially derived. This kind of extractor
would require no classifier. Conversely, a perfect classifier would work without a sophisticated
feature extractor [25]. From a practical point of view, the task of feature extraction depends on
the problem and on the domain to a much greater extent than classification. In fact, a good feature
extractor for a given problem can be of little use in another domain. The structure of a classi-
fier, instead, can be easily adapted to new problems and reused by changing few configuration
parameters.

4.1. Activities of daily living
We identified three ADL classes that may be confused with real falls: Sitting/Lying, Jump-

ing/Running/Walking and Hitting the sensor. Then, we collected and studied the acceleration
patterns of such ADLs. Here we briefly report the main characteristics of events belonging to
each class.

4.1.1. Sitting/Lying
Sitting or lying on soft or hard surfaces can generate a fall-like event when a person, due to a

reduced muscular force or tiredness, moves in a less controlled way and approaches the surface
quite quickly. Different patterns are produced by elastic, soft and hard surfaces.

When sitting or lying on an elastic surface like a bed, a fall-like event is unlikely to be
produced. However, in certain circumstances an acceleration peak could be present, due to the
fact that the body has a relatively high kinetic energy. After the first contact, energy is dissipated
very slowly so that the acceleration trace shows several smooth peaks. As shown in Figure 5,
there is a single peak higher than 3g followed by some oscillations. A similar behavior can be
seen in the case of soft surfaces, like when sitting on a sofa. In this case, the first peak is generally
very smooth and it is followed by one or two smaller peaks.

Sitting on a hard surface like a chair or an armchair frequently produces a fall-like event, as
a sharp acceleration peak is generated when the body impacts the surface. The kinetic energy is
quickly absorbed and a quick stabilization of the acceleration magnitude can be seen.
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Figure 5: Sitting on elastic surface
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Figure 6: Jumping

To summarize, the distinguishing feature of sitting or lying on elastic/soft surfaces is that
acceleration traces show relatively slow oscillations, while with hard surfaces there are few
oscillations that stabilize quite quickly.

4.1.2. Jumping/Running/Walking
The Activity Test can strongly reduce the number of false alarms produced during actions that

have a significant duration, such as walking or running. However, when the user stops moving, a
fall-like event can still be triggered.

Running and jumping activities easily lead to relatively high acceleration magnitude peaks,
which exceed the 3g threshold. Jumping has a very peculiar acceleration pattern that may ease its
identification. As shown in Figure 6, a first smooth peak, usually lower than 3g and correspond-
ing to the time the person starts to leap, is followed by a relatively long free fall phase during
which the acceleration magnitude is close to 0g. Finally, landing produces a sharp and higher
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Figure 7: Running (followed by a stop)
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Figure 8: Walking (followed by a stop)

peak (or two rapidly subsequent and partially overlapped sharp peaks if the feet do not land at
the same time) followed by a quick stabilization to 1g.

Running (Figure 7) can be modeled as a sequence of small jumps, where free fall phases
between steps are shorter, and landing peaks are often made of two or more overlapped sub-
peaks, due to the landing foot starting a new leap.

Walking (Figure 8) is made of a sequence of steps, and produces an acceleration pattern that
has some similarities with running, since it presents a regular sequence of peaks. As expected,
the peaks are lower and the free-fall phase between steps is less evident. Nevertheless, a walk
characterized by a relatively high pace may easily lead to fall-like events when the user stops
moving.

4.1.3. Hitting the sensor
Hitting the sensor unintentionally with a hand or with an object, such as a bag, can produce

one or more high and sharp acceleration peaks, as it is shown in Figure 9. These events proved
12



 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  500  1000  1500  2000  2500  3000

A
cc

el
er

at
io

n 
m

ag
ni

tu
de

 [g
]

Time [ms]

Module

Figure 9: Hitting the sensor
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Figure 10: Fall forward

to be very common during a typical day, and may lead to a large number of false alarms. In
this case, the acceleration pattern presents one or more peaks surrounded by inactivity periods
(acceleration magnitude close to 1g), and the number of samples below 1g is very small.

4.2. Falls

To understand the acceleration behavior during falls, several traces have been registered with
the help of volunteers. Some of the falls have been performed using protective pads. Data from
a dummy were not used as they showed very different dynamics, due to the material’s elasticity,
higher than the human tissues, and because the dummy does not react nor bend while falling.

Falls may start with an unexpected event, like toppling or slipping, or be consequence of
fainting. Before impacting the ground, many persons may try to use their hands for protection,
even though landing with no reaction may also happen. Different ways of falling have been
considered: while walking, from a bed, landing in a prone position, on knees, etc. All falls have
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in common a violent impact on a hard surface, so that the acceleration often shows two or more
peaks greater than 3g, due to different parts of the body hitting the ground at different times. As
the sensor was placed at the user’s waist, the highest peak usually correspond to the time the
waist reaches the ground.

Falls from bed are very common among the elderly. They are characterized by a free fall
phase with acceleration close to 0g that, after the main impact characterized by a high peak, is
usually followed by smaller peaks due to the waist bouncing and then landing again on the floor.

It should be noted that, during a simulated fall, the volunteer is aware of the imminent impact
and thus tends to control speed and movements. This makes experimental falls more difficult to
be distinguished from other fall-like events, since impacts are slightly less violent than real falls.
Thus, we argue that these falls can be successfully used for validating and analyzing the perfor-
mance of a fall detection system, since the obtained results will be conservative with respect to
real events.

We also recorded a set of falls with a video-camera and asked a gerontologist to evaluate
their level of realism. The types of falls that have been considered are: forward fall, backward
fall, and faint. For every category, two different falls have been filmed and shown to the geron-
tologist, both at normal speed and slow motion. The falls have been performed by three different
subjects; two of them used knee and wrist protections, while the third, the one who performed
the backward falls, didn’t use any protection. According to the gerontologist, the level of realism
of the falls scored 3 points on a 1-4 scale.

Kangas et al. discuss the similarities between five real falls happened to elderly people and
the intentional falls performed during laboratory sessions by middle-aged subjects [26]. To col-
lect the five real falls, sixteen people have been monitored for a long period (up to six months).
A comparison between the real-life falls and the intentional falls showed that the acceleration
signals share similar features. In several cases, the real-life falls include a pattern made of a pre-
impact phase and an impact phase. Also, as a consequence of protective actions (e.g. the use of
hands), the impact phase of real-life falls is generally characterized by the presence of multiple
acceleration peaks.

4.3. Feature extraction
In the following paragraphs we describe the eight features which are used by the classification

engine to recognize the class of a fall-like event. Before describing the features used to distin-
guish the ADL classes from real falls, it is important to define three instants which characterize
each fall-like event:

• peak time, time of the peak exceeding the 3g threshold and followed by at least 2500 ms
without further peaks.

• impact end, time of the last acceleration magnitude value above 1.5g, searched within the
interval [peak time, peak time+1000 ms]. It represents the instant of the last significant
impact with the ground.

• impact start, time of the first acceleration magnitude above 1.5g which is preceded by at
least one sample below 0.8g, searched within the interval [impact end-1200 ms, peak time].
It is the time of the first impact on the ground, after the free-fall period (when acceleration
magnitude goes significantly below 1g). If the free-fall sample is not found, as it is often
the case when the peak has been caused by an unintentional hit to the sensor, impact start
time is set to peak time.
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(a) AAMV window in case of sitting (0.17g)
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(b) AAMV window in case of fall (0.59g)

Figure 11: Accelerometric trace and AAMV

All the thresholds used have been determined by data analysis.

Average absolute Acceleration Magnitude Variation - AAMV. As previously mentioned, when
sitting or lying on a soft/elastic surface, acceleration patterns show some smooth peaks, with
slow variations in magnitude right after the main impact. With hard surfaces, instead, there is a
single sharp peak followed by a rapid stabilization. To encompass both situations, let us define
the Average absolute Acceleration Magnitude Variation (AAMV) [14] index as follows:

AAMV =
∑

i:time(ai)∈win

|ai+1 − ai|

] {i: time(ai) ∈ win}
(1)

where win is an observation interval centered at the middle time between impact start and impact
end; ai are the samples of the observed acceleration magnitude. Experiments, where the size of
win has been set to 1000 ms, showed us that average values for AAMV are 0.52g for the Falls
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class, and 0.23g for the Sitting/Lying class (two examples of AAMV windows are shown in
Figure 11(a) and 11(b)).

The AAMV can also be used to perform the Activity Test introduced in Section 2.3. Exper-
iments showed us that the threshold 0.05g, calculated in the interval [1000, 2500] ms after peak
time, can be used to distinguish activity from inactivity. Fall-like events exceeding the threshold
are discarded as false alarms, because the person is still active after the event. The threshold
has been chosen to minimize the risk of discarding real falls, while being still useful to filter
long-lasting activities such as walking and running (which may produce many peaks higher than
3g, but that are not followed by an inactivity period).

Impact Duration Index - IDI. Impact duration is the difference between impact end and impact
start. This feature is useful to recognize as false alarms events characterized by a short impact
duration (e.g., hitting the sensor). From our experiments, real falls have a minimum IDI of
320 ms and an average IDI of 780 ms.

Maximum Peak Index - MPI. This feature represents the highest value of acceleration magnitude
found in the interval [impact start, impact end]. Based on our dataset, average values of MPI are
5.8g for the Falls class, 3.9g for Lying/Sitting class, 4.2g for Jumping/Running/Walking class.

Minimum Valley Index - MVI. This feature represents the lowest value of acceleration magnitude
found in the interval [impact start - 500 ms, impact end]. MVI is useful to distinguish the Falls
class from fall-like events due to unintentionally hitting the sensor. Experimentally, the Falls
class shows an average MVI equal to 0.24g, while hitting the sensor generally produces a MVI
greater than 0.9g.

Peak Duration Index - PDI. As previously said, according to our experiments the Falls class is
characterized by the presence of sharp acceleration magnitude peaks, while sitting or lying on
soft surfaces produces slower acceleration variations. PDI measures the duration of the acceler-
ation peak exceeding the 3g threshold. The procedure to calculate PDI is the following:

• peak start is defined as the time of the last magnitude sample below 1.8g occurred before
peak time;

• peak end is defined as the time of the first magnitude sample below 1.8g occurred after
peak time;

• PDI is the difference between peak end and peak start.

According to our dataset, the average PDI value of the Falls class is 80 ms, while lying/sitting
on soft surfaces generally have a PDI value around 120 ms.

Activity Ratio Index - ARI. This feature measures the “activity level” in an interval of 700 ms
centered at the middle time between impact start and impact end. The activity level is calcu-
lated as the ratio between the number of samples not in [0.85g, 1.3g] and the total number of
samples in the 700 ms interval. From our experiments, Falls, Jumping/Running/Walking and
Sitting/Lying classes have an average ARI of 0.7, while hitting the sensor generally produces an
ARI significantly lower than 0.5.
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Free Fall Index - FFI. As mentioned when describing the ADL classes, jumping, running and
walking activities may produce a fall-like event if the user suddenly stops moving. The peak
exceeding the 3g threshold is due to the feet hitting the ground after a step or a jump: immediately
before this peak we expect to find a free-fall interval characterized by acceleration magnitude
values below 1g. In order to check the presence of this condition, we defined a feature based on
the average acceleration magnitude evaluated in a small interval before peak time.

Such an interval lasts 200 ms and is defined as follows:

• search for an acceleration sample below 0.8g occurring up to 200 ms before peak time; if
found, the sample time represents the end of the interval, otherwise the end of the interval
is set 200 ms before peak time;

• the start of the interval is simply set to 200 ms before its end.

FFI is defined as the average acceleration magnitude evaluated within the interval.
This feature is particularly useful for the recognition of jumps, as they have a relatively long

free-fall period with acceleration magnitude values close to 0g. According to our experiments,
jumps produce an average FFI of 0.1g, while the minimum FFI experimented for the Falls class
is 0.6g with an average of 1.1g.

Step Count Index - SCI. Walking consists in a regular sequence of steps, while running consists
in a sequence of small jumps. In both cases, the typical acceleration pattern is characterized by
a sequence of valleys and peaks occurring with a quite regular period. Valleys and peaks are
due to the movement of the foot before reaching the ground. SCI is the step count evaluated
2200 ms before peak time. In order to estimate this index we have used the number of valleys
found. More precisely, a valley is defined as a region where the acceleration is below 1g for at
least 80 ms, followed by a peak above 1.6g within 200 ms. Consecutive valleys are separated by
at least 200 ms.

4.4. Pattern Classifier
The Pattern Classifier uses a neural network to process the features and produces four mem-

bership values. Figure 12 depicts the network architecture. The network input is a vector of the
eight indexes computed by the Feature Extractor: AAMV, IDI, MPI, MVI, PDI, ARI, FFI, SCI.
The output consists of four neurons, one for each of the three ADL classes and one for the Falls
class.

The primary choice in the design of a neural network concerns the network structure. Since
our target is pattern recognition, we used a multi-layer feed-forward network. Thanks to the
reduced system complexity obtained by the preventive feature extraction, a two-layers feed-
forward network suffices to our purposes. After the training and the cross-validation runs, we
found that the optimal number of hidden neurons is 7.

The protocol used for training the network is the well-known back-propagation algorithm
(with learning rate equal to 0.1 and momentum equal to 0.9). The activation function for each
layer is the log-sigmoid function, the most suitable for classification [25].

A training phase was carried out with the purpose of making the neural network learn the
complexities of the input model and understand how to classify the different patterns. Afterward,
in order to have a better measurement of network’s performance in the recognition of unseen
inputs, a test was conducted using the cross-validation technique. Finally, a campaign of contin-
uous data collection was performed for further validation of the fall detection system.

17



h1

h2

h3

h4

h5

h6

h7

AAMV

IDI

MPI

MVI

PDI

ARI

FFI

SCI

Hidden layerInput layer Output layer

Sitting
Lying

Jump
Run

Walk

Hitting
Sensor

Falls

Figure 12: Neural network architecture

Gender Age Height
(cm)

Weight
(kg)

M 20 175 74
M 26 178 75
M 27 175 62
M 37 177 81
M 67 175 95
F 33 170 56
F 60 165 70

Table 2: Volunteers’ characteristics

5. Performance evaluation

The observed behavior of a fall detection system is represented by four possible situations:
true positive (TP), a fall occurred and the system correctly detects it; false positive (FP), the
system declares a fall event, but it was instead a normal ADL; true negative (TN), the system
correctly classifies a fall-like event as an ADL; false negative (FN), a fall occurred, but the
system does not detect it. System reliability can then be evaluated through the following in-
dexes [27]: sensitivity = T P/(T P + FN), which measures the ability of detecting all the real
falls; speci f icity = T N/(T N + FP), which measures the ability of detecting only real falls;
accuracy = (T P + T N)/(T P + FP + FN + T N), which is the proportion of true results in the
considered data set.

5.1. Training and re-substitution error

To train the network, we used a database of falls and fall-like ADLs gathered with the help
of 7 volunteers. Gender, age and physical characteristics of volunteers are shown in Table 2. The
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database includes 86 fall-like events, partitioned into 44 Falls, 14 Jumping/Running/Walking, 14
Sitting/Lying and 14 Hitting the sensor ADLs. The training set has not been split evenly among
different classes: falls are more than 50% of the total number of events. Indeed, this choice
comes from the consideration that sensitivity is clearly the most important performance index
for a fall detection system.

The training process was carried out by randomly feeding the network with all the events
from the training set, for a total of 500 epochs. The classifier achieved 100% success rate, all
the samples were classified properly and the confusion matrix presented values only on the main
diagonal. This means that the system achieves 100% sensitivity, specificity, and accuracy, being
able to detect all the real falls and discard all the false alarms.

The error rate on a training set is also known as the re-substitution error and, even though
useful for a preliminary evaluation, it is not a good index to predict the behavior of the classifier
when new and unknown data are processed.

5.2. Cross-validation
In order to estimate the validity of our classifier to a wider extent, we used the general method

known as cross-validation. In particular, we applied a simple generalization of the method, called
k-fold stratified cross-validation. Let D be the complete database of events. The whole set of
events is randomly divided into k disjoint sets of equal size n/k, where n is the cardinality ofD.
The classifier is then trained and validated k times, each time with a different subset held out as
a validation set, while the k − 1 remaining subsets are used for training. For instance, if k is set
to 10, this implies that each time we perform training and validation, 90% of the events are used
for training, while the remaining 10% is used for validation. The term stratified means that each
class is properly represented in the subsets, according to the proportions chosen for the original
training set.

For the tests, k has been set to 10. Actually, ten-fold stratified cross-validation is widely
considered to be a good choice to get an accurate estimate of error when data for training and
validation is limited.

Cross-validation confirmed the results obtained using the re-substitution error: the classifier
achieves 100% sensitivity and specificity (and thus also 100% accuracy) in detecting real falls,
while all the ADLs are recognized properly.

5.3. Continuous data collection campaign
In order to obtain a further validation of the performance of the fall detection system, three

volunteers were involved in a continuous data acquisition campaign. They were asked to follow
their typical lifestyles, trying to forget they were wearing a sensor. Activities included jump-
ing, running, walking, sitting, lying, hitting the sensor and driving a car. Volunteers were not
requested to tag each fall-like event produced, but only to keep track of their movements, speci-
fying how many hours they spent indoors, outdoors or driving a car. Accelerations were recorded
and subsequently analyzed off-line. In total, we collected 82 hours of movements, distributed in:
64 hours indoors, 9 hours outdoors and 9 hours driving a car. No real falls occurred during the
test.

As expected, outdoor activities generated a great number of acceleration peaks exceeding the
3g threshold, especially because walking and running sessions were included in the experiment.
However, only a few events were not discarded by the Activity Test and were passed to the
classification engine. There, they were classified as a Jumping/Running/Walking event and thus
correctly discarded.
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Technique Sensitivity (%) Specificity (%) Accuracy (%)

Median filtering plus acc. magnitude 90.9 31.0 61.6
Vertical velocity estimation 100.0 35.7 68.6

Acc. magnitude plus timeouts 81.8 81.0 81.4

Table 3: Performances of relevant fall detection techniques

All the other fall-like events were produced indoors. The count of peaks followed by inactiv-
ity was 43, but they were all recognized by the classifier as false alarms. More precisely, 1 event
was recognized as Jumping/Running/Walking, 11 events as Sitting/Lying and 31 as Hitting the
sensor. In our experiment, driving a car did not produce any peak exceeding the 3g threshold.

As real falls did not happen, these tracks could be used only to validate the specificity of the
system: the test confirmed the 100% specificity in distinguishing false alarms from real falls.

6. Comparison with relevant existing techniques

This section reports the results of the quantitative comparison of our fall detection approach
with some relevant techniques described in recent literature. In particular, we selected a set of
methods that have been conceived to operate using a wearable waist-mounted accelerometer. All
of these methods have been re-implemented following the description available in the published
papers. Then, they have been fed with our traces of intentional falls and fall-like activities, in
order to evaluate their performance with respect to our classification technique on the same set
of data (where our technique obtained 100% sensitivity, specificity, and accuracy). The results
of this comparison are summarized in Table 3.

6.1. Acceleration magnitude threshold and median filtering

The simplest approach to detect falls using an accelerometer consists in using a single thresh-
old on the acceleration magnitude [28]. However, it has been shown that many ADLs present
acceleration magnitude peaks similar to those of falls, thus making ADLs really difficult to be
distinguished from dangerous impacts on the ground [10, 14]. In particular, all the fall-like events
of our training set present a peak equal or greater than 3g and, thus, such a simple method fails
in isolating ADLs from real falls.

Median filtering of the acceleration magnitude - using a three samples window - has been
suggested as a way to reduce noise and improve the specificity of the detection [10]. We applied
this filtering technique to our set of data and obtained a maximum overall accuracy equal to
61.6%, with 90.9% sensitivity and 31.0% specificity.

6.2. Vertical velocity estimation

An estimation of the vertical velocity achieved by the user’s waist immediately before the
impact can be combined with acceleration magnitude to distinguish falls from fall-like events
with a higher degree of accuracy [29, 30, 31, 32]. A simple estimation method is based on the
numerical integration of the acceleration magnitude after gravity has been subtracted:
v =
∫

(acc.magnitude − 1g) dt.
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Different techniques have been proposed to reduce the drift due to numerical integration.
Degen et al. [29] suggested the application of a damping factor to the positive acceleration during
integration: when acceleration magnitude is equal or above 1g, velocity is set to the velocity of
the previous sample multiplied for the damping factor. Bourke et al. [31] described the use of a
low-pass filter combined with a technique to detect periods of static activity. The filter used is a
2nd order Butterworth low-pass filter with 15Hz cut-off frequency, while static periods are found
using a moving 1sec variance window.

In order to evaluate this approach, we implemented a velocity estimation algorithm using
low-pass filtering, inactivity detection and a properly set damping factor to reduce the drift of
numerical integration. An exhaustive search for the velocity threshold and the damping factor
that achieve the best overall accuracy has been performed, using a reasonable range of values.
On our training set we obtained the following results: accuracy equal to 68.6%, with 100%
sensitivity and only 35.7% specificity.

6.3. Acceleration thresholds plus timeouts
Acceleration magnitude thresholds and properly set timeouts can be combined to characterize

a typical fall and distinguish hazardous events from ADLs. One interesting example of a fall
detection system using this approach is represented by iFall [33], one of the first fall detection
applications developed using the Android platform (currently available on the Android market).
The proposed algorithm is based on acceleration magnitude thresholds, timeouts and long-lie
detection.

Two acceleration magnitude thresholds - low th and hi th - are used to detect the free-fall
phase and the impact on the ground, respectively. A specific timeout - lower timeout - is used to
ensure that the impact happens not later than 1sec after that free-fall has been detected. After the
impact, there is a bouncing interval during which samples are not analyzed, waiting for stabiliza-
tion of acceleration. Immediately after the bouncing interval, the algorithm starts monitoring for
a long-lie phase after the fall, defined as a time period during which the measured acceleration
magnitude is within a given range. The long-lie period must start not later than upper timeout
seconds after the impact has been detected.

In order to make a quantitative comparison with our detection technique, we implemented
this algorithm and ran it with our data-set. The parameters were chosen with an exhaustive
search within reasonable ranges, in order to obtain the best detection accuracy. The result is an
accuracy equal to 81.4%, with 81.8% sensitivity and 81.0% specificity.

The use of timeouts and acceleration threshold can effectively improve the accuracy of the
detection, while requiring a relatively low computational cost.

6.4. Combining use of orientation with the previous approaches
The recognition of posture after the impact on the ground has been widely suggested as an

effective method to improve the specificity of fall detection systems [30, 32]. The rationale is
that while falls generally end with the user lying on the ground, most of the ADLs do not present
such a significant variation in the orientation of the user’s waist.

If the initial orientation of the sensor is known, then the acceleration on the vertical axis - the
axis which has the same direction as gravity when the user is standing - can be analyzed to detect
with good confidence if the user is lying after the impact. In [32], an angle of 60◦ is suggested as
the minimum expected variation from the standing position during a real fall.

This approach cannot be directly applied to our training set of data, as the sensor we used to
collect data was voluntarily placed without a fixed orientation. Nevertheless, we may reasonably
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assume that all running, walking, jumping, sitting and hitting the sensor ADLs would have been
correctly filtered using the orientation of the device, leading to a high specificity value with a
relatively low effort.

However, there are some important issues that must be taken into account. First of all, such
an approach has the drawback of requiring to place the sensing device with known and fixed
orientation. This significantly reduces usability, as the user has to take care of how the device
is oriented or periodically perform a calibration. Second, the ADLs due to quickly lying on a
soft surface are not addressed by this technique and are likely to lead to false alarms. Finally, it
cannot be ignored the risk of missing real falls due to calibration errors or to the fact that the user
may not be perfectly parallel to the ground after the impact.

7. Related works

7.1. Smartphone-based fall detection systems

Several smartphone-based fall detectors have been developed so far. This confirms that the
idea of using a smartphone as the basis for a fall detection system is sound. All the systems make
use of the embedded accelerometer to detect a fall, but use different algorithms. The systems
span from a simple threshold-based fall detector to a wavelet analyzer.

The authors of PerfallD [34] propose a comprehensive system to integrate fall detection and
emergency communication. They designed two algorithms for fall detection. The first is based
on acceleration thresholds: the total and vertical accelerations are compared in time with specific
thresholds determined through experiments. The second technique uses a magnetic field sensor
and a magnetic accessory. The sensor is embedded in a smartphone, which is placed in the right
pocket whereas the accessory is placed slightly above the left knee. In this way the system is able
to infer the distance between the smartphone and the accessory. If the distance between them is
closer than normal, a fall event is detected.

In [35] the authors used discrete wavelet transform as a feature extraction technique. Then,
falls and activities of daily living are distinguished through their properties in the frequency
domain. By using this method, they achieved better performance (37%) compared to [33]. The
system also provides location information using GPS and a warning system to alert a set of
predefined contacts.

Kwapisz et al. [36] used phone-based accelerometers to perform activity recognition instead
of fall detection. The work is part of the Wireless Sensor Data Mining (WISDM) project which
aims to resolve research issues related to mining sensor data from smartphones. Six common
activities were analyzed: walking, jogging, ascending stairs, descending stairs, sitting, and stand-
ing. Twenty-nine users performed the activities carrying an Android smartphone in their front
pants leg pocket and under the supervision of WISDM team members. The sampling time was
20Hz and features such as averages, standard deviation etc. were generated from the accelera-
tions along the three axes, in a 10 seconds window. Three classification techniques were analyzed
to predict user activities: decision trees, logistic regression and multilayer neural networks. A
ten-fold crossing validation was used for all the experiments and the multilayer neural network
performed better than the other two techniques. Results showed that the walking, jogging, sit-
ting, and standing activities are recognized with accuracy above 90%. The recognition of the two
stairs activities, going up and down, was not accurate.

Other simple Android- and iPhone-based fall detector are nowadays available in the app
stores. Besides the different user interfaces, the principle of functioning is very similar: a fall
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is detected if the acceleration magnitude of the accelerometer in the smartphone reaches a given
threshold; if there are no movements for a certain amount of time, the system sends an alarm
(phone call, text message, email etc.) to a set of contacts.

7.2. Acceptability of m-health systems in similar domains

Here are summarized three studies where interviews have been used to evaluate the accept-
ability of technological solutions based on mobile devices.

In [37], an intelligent and unobtrusive reminder for taking medications system is discussed.
Ten participants aged over 65 were selected from a pool of patients considered poor adherents,
i.e. missing more than 20% of prescribed doses. The participants were selected based on some
well-known scales: Alzheimer Disease Assessment Scale-Cognitive Subtest (ADAS-Cog), de-
layed word-list recall scores, Trail Making Test, Geriatric Depression Scale, and Cumulative
Illness Rating scale.

A study on a location-based reminder application running on a mobile phone [38], has been
carried out over a two-week period among ten participants (seven men, three women) aged be-
tween 18 and 45. Each participant had a different occupation and lifestyles and was recruited
through mailing list posting and advertisements. Similarly to our case, none of them tested a
similar system before. The study has been conducted in three steps, by providing a questionnaire
about current habits, analyzing how the participants interacted with the mobile phones, and fi-
nally by asking opinions about the overall experience at the end of the two weeks. They found
that eight of ten participants appreciated the consistent availability of location-based reminders
through their mobile phone, and lessened their use of other reminder tools. Moreover, the types
and way the the reminders were posted revealed that location itself was not always important,
but just an additional information.

In [39] PDAs are used to help people with cognitive impairment to recall how to perform
common activities of daily living. On the basis of the current context, a PDA is able to provide
both visual and voice instructions to perform a task. In this case, individuals were recruited
according to their cognitive impairments, the ability to perform a task, and the severity of loss in
short-term memory. Also the ability to use a PDA was considered. Eight subjects were selected
(two women) aged between 20 and 48. They were affected by syndromes such as Traumatic
Brain Injury, Intellectual and Developmental Disabilities, Schizophrenia, and Epilepsy. The
experiment consisted in executing three tasks including common actions to be performed at a
Coffee shop. Results showed that only two subjects preferred the help of a human instructor in
place of the PDA’s instructions.

8. Conclusion

A fall is an ill-defined process, therefore it is not an easy task to describe it thoroughly. This
implies that identifying signal patterns, and then define parameters and filters that can be applied
to distinguish falls from common activities, requires a significant effort. Moreover, any tech-
nique based on analytical-only methods would require further refinement to be tailored to new
users. For these reasons, a machine learning approach can be successfully applied, together with
analytical methods, to provide an adaptive and easily expandable solution to the fall detection
problem.

The contribution of the work presented in this paper to the body of existing literature is
twofold. First, it shows that the recognition of fall-like activities of daily living (ADL), on the
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basis of peculiar features of the acceleration patterns, can significantly reduce the number of false
alarms. It is important to note that, in a trivial system where an alarm is raised when acceleration
becomes higher than the 3g threshold, all the fall-like ADLs in our dataset would produce a
false alarm. Second, the interviews with the group of aged people showed that usability is a
fundamental factor for a real adoption of a fall detection system. In particular, forcing the users
to place the phone on their belt can make a fall detection system unattractive for a large part of
the population. In this context, the possibility of using a small external sensing unit can greatly
reduce the intrusiveness of the system.
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