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Wearable devices can gather sensitive information about their users. For this
reason, automated authentication and identification techniques are increasingly
adopted to ensure security and privacy. Furthermore, identification can be used
to automatically customize operations according to the needs of the current
user. A gait-based identification method that can be executed in real time
on devices with limited resources is here presented. The method exploits
a wearable accelerometer to continuously analyze the user’s gait pattern and
perform identification. Experiments were conducted with ten volunteers, who
carried the device in a trouser pocket and followed their daily routine without
predefined constraints. In total, ∼ 98 hours of acceleration traces were collected
in uncontrolled environment, including 3073 gait segments. User identification
results show a recognition rate ranging from 95% to 100%, depending on the mode
of operation. It is demonstrated that the method can be executed on a standalone
device with less than 8 KB of RAM. In addition, the energy consumption is
evaluated and compared with an architecture that requires the presence of an
external computing unit. Results show that the proposed solution significantly
improves the lifetime of the device (approximately +70% for the considered

platform), hence fostering user acceptance.
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1. INTRODUCTION

The rise of wearable devices provides the opportunity
to gather, both continuously and unobtrusively, large
amounts of information about their users. This, in turn,
fosters the development of novel applications in many
industrial areas, from wellbeing to telemedicine [1–5].
Information produced by wearable devices is strictly

personal and generally sensitive. Thus, it is essential
to provide adequate authentication and identification
methods. Moreover, some applications may benefit
from knowing the identity of the user, as the parameters
of operation can be customized according to the current
user’s preferences and needs. To this purpose, a number
of biometric techniques based on users’ movements have
been developed during the last years. These techniques
rely on the fact that every individual performs the
activities of daily living with a unique pattern. As
a consequence, movement information collected when
the device is worn can be compared to pre-acquired
“signatures” in order to identify and/or authenticate

users with a reasonable degree of accuracy. The vast
majority of proposed methods are based on the analysis
of gait, since it is highly specific [6]. In addition, walking
is a frequent activity and thus provides numerous
“hints” about the identity of the user. Biometric
features, such as gait or heart rate variability, have
also been proposed as a novel means to provide secure
communication in body area networks [7].

This paper focuses on gait-based identification. We
agree with the distinction between identification and
authentication as introduced in [8]. In identification the
purpose is to recognize the current user among the set
of possible users of the device. Consequently, the model
used for gait-based identification is built using labeled
instances belonging to each of these users. Differently,
authentication aims to recognize whether the current
user is authorized, and the gait-model is typically built
relying only on the authorized user’s data (unauthorized
users are not known in advance by the system).

Identification methods are used when a group of
individuals (e.g., athletes, patients, members of a
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family, etc.) share one or more wearable devices.
Thanks to gait-based identification, the shared device
can automatically customize its way of operation
without manual intervention. For example, an activity
tracker could automatically recognize the current user,
and then update his/her statistics at the end of the
session. It is worth to note that the user interface of
wearable devices is in many cases rather rudimentary,
because of their small form factor. Thus, the presence
of automatic identification mechanisms can be useful to
make the interaction between humans and devices less
cumbersome.
Wearable devices are characterized by batteries with

limited capacity. Moreover, the processing unit is in
general not particularly powerful, as a consequence
of the scarce energy budget. These constraints in
terms of energy and computing power should, in
our opinion, be considered during the design and
implementation of gait-based identification methods.
Even when gait-based identification is executed on
a more powerful device, such as a smartphone, the
adoption of lightweight mechanisms is preferable, as the
impact on the battery can be reduced.
Unfortunately, existing literature about gait-based

identification does not deal with these issues. A
large fraction of recent gait identification systems is
smartphone-based. This is due to the widespread
availability and ease of programming of these devices.
Nevertheless, despite their increasing computing power,
very few studies include on-device identification of
users. Most of the times, the smartphone is used
to collect acceleration traces, whereas classification is
performed off-line on a standard PC. Some studies
have been carried out using small dedicated devices,
but also in this case they have been used only
for data collection (classification is again executed
off-line on more powerful machines). Thus, real-
time identification on a standalone wearable device,
possibly characterized by limited hardware resources,
is substantially unexplored. In addition, since the
analysis of collected data is generally executed off-line,
the problems related to the energy efficiency of currently
available identification techniques have been scarcely
investigated. Only in a few works (such as [9]) the
computational requirements were estimated.
Another aspect not thoroughly investigated is the

behavior of identification methods when executed in
the real world. Almost all existing methods have
been evaluated using datasets made of short traces,
collected in laboratory sessions. We believe that a
better understanding of gait identification methods can
be achieved by using longer traces collected during
everyday life: this makes possible to study the effects
caused by unexpected situations and behaviors on the
recognition process.
The main contribution of this article with respect to

previous work in the field of gait-based identification
can be summarized as follows:

• A gait-based identification method specifically
designed for being executed in real time on
devices with limited resources is presented. All
the steps needed to identify the user (gait
detection, feature extraction, classification, and
multi-instance fusion) have been carefully devised
having in mind miniaturized devices as targets. As
a result, the proposed method is able to perform
real-time identification on a standalone device
embedding a microcontroller unit (MCU) with
8 MHz clock and less than 8 KB of RAM. Real-
time identification enables the device to promptly
adapt its operation mode to the current user.

• For the first time, gait-based identification is
evaluated in uncontrolled environment. The
dataset used to evaluate the method consists of
acceleration traces collected by volunteers during
their normal routine and without any supervision
or predefined constraint. In total, 3073 gait
segments were collected in 98 hours of experiments.
This is a step forward for a deeper understanding
of gait-based identification in realistic settings, as
previous works typically relied on short, supervised
experiments performed in controlled environment.

• Notwithstanding the real-time execution require-
ment and the challenging experimental setting, the
proposed method delivers a correct identification
rate that is in line with the best-performing tech-
niques currently available. As mentioned above,
state-of-the-art techniques typically require off-line
processing on an external unit, and were evaluated
in controlled environment (e.g., volunteers were
asked to walk in a straight corridor).

• The energy consumption of the proposed method,
which can be entirely executed on the wearable
device, has been evaluated and compared with an
architecture that requires the presence of a base
station. Our solution, besides being preferable
as it is not limited to the communication range
imposed by the base station, improves significantly
the lifetime of the device (approximately +70% for
the considered platform).

2. METHOD FOR GAIT-BASED IDENTIFI-
CATION

A flowchart representation of the gait-based user iden-
tification method is shown in Figure 1. Acceleration is
continuously sampled by a wearable device embedding
a tri-axial accelerometer. Acceleration samples are pro-
cessed by a Walking Detection algorithm, which is de-
signed to detect gait segments. A gait segment is a vec-
tor of tri-axial acceleration samples collected while the
user is walking. Each time walking activity is detected
by the Walking Detection algorithm, the gait segment
is used as input to Gait-based User Identification. The
first step of gait-based identification consists in extract-
ing a set of features from the raw acceleration samples
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FIGURE 1. Flowchart representation of the proposed method.

of the gait segment (preprocessing plus feature extrac-
tion), so as to reduce data complexity and prepare the
inputs for the classifier. The vector of features forms
a gait instance. Gait instances are then used to feed
the classifier, which is based on a previously generated
model. The result of classification is a set of probability
values, one for each user to be identified (class probabil-
ities). Finally, according to an Identification technique,
the class probabilities are analyzed to produce, if pos-
sible, an identification output.
In the following, all the components of the proposed

method are presented in detail.

2.1. Walking detection

Walking detection includes two phases: Gait Segment
Detection and Autocorrelation-based filtering.
Gait Segment Detection is based on the algorithm

that we proposed in [10] (the reader is forwarded to the
referred article for further details, not included here for
the sake of clarity, as the focus is here on identification).
A gait segment is found when eight consecutive steps
are detected, and a regularity test based on standard
deviation is passed. Eight was selected as a trade-off
between fast identification and reliable detection of gait
patterns.
The second phase – Autocorrelation-based Filter –

is aimed at discarding gait segments characterized by
reduced regularity, which are less suitable to properly
represent the user’s typical gait patterns. For example,
irregular segments are produced while climbing stairs,
or when a sudden change in pace occurs. The test is
based on the autocorrelation coefficient at the second

TABLE 1. Selected features.
AAVH AAVV AC-C1M duration
IQRV kurtosisM kurtosisV MADH

maxH meanH RMSM RMSV

skewnessM st. dev.H

dominant period. The autocorrelation coefficients are
found as described in Section 2.2.

The algorithm has low computational and memory
requirements, as it is shown in Section 4.

2.2. Preprocessing and feature extraction

In terms of data, a gait segment is a vector of tri-
axial acceleration samples (acceleration vector). These
raw samples are first low-pass filtered at 20 Hz by
using a 2-nd order Butterworth filter. Then, three new
vectors are calculated: (i) acceleration magnitude, (ii)
vertical acceleration, and (iii) horizontal acceleration.
Each element of the acceleration magnitude vector is
found as the Euclidean norm of the corresponding
sample in the acceleration vector. The vertical and
horizontal acceleration vectors represent the vertical
and horizontal dynamic components of acceleration,
respectively. These two vectors are found according to
the technique described in [11], which is independent
from the orientation of the device with respect to the
user’s body. Hence, users are allowed to carry the device
without caring about its orientation.

The three acceleration vectors are used as inputs
to feature extraction. Hereafter, we use the suffixes
M, V, and H to refer to a feature calculated
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on acceleration magnitude, vertical acceleration, and
horizontal acceleration, respectively (for example, the
featuremeanH is obtained by computing the mean value
of horizontal acceleration). Also, we use the term gait
instance to refer to the feature vector obtained through
feature extraction.
The feature set was selected from an initial set

with 41 features, which included well-known statistical
features as well as features derived from autocorrelation
coefficients. The selection procedure was based on the
wrapper method [12]. Wrapper methods exploit the
target classifier to assign a score to a feature set – the
score corresponds to the estimated accuracy achieved by
the classifier using that specific feature set. Wrappers
generally give better results than methods relying only
on statistical characteristics of features (filter methods),
as the selection procedure is tailored to the classifier. A
forward selection hill climbing technique was used to
search through the feature space and select the feature
set. The search started with an empty set, and the
feature providing the best accuracy was selected. Then,
each of the remaining features was tried in conjunction
with the best performing feature, in order to select
the best pair. The procedure was repeated by adding
to the set the feature leading to the highest increase
in estimated accuracy. The search was terminated
when two consecutive iterations did not lead to an
improvement in terms of estimated accuracy.
In our approach, the feature set was selected for the

LLR classifier (described in Section 2.3) by using the
above described procedure. The selected features are
listed in Table 1. InterQuartile Range (IQR), kurtosis,
max, mean, Root Mean Square (RMS), skewness,
and standard deviation are statistical measures that
have been widely used in activity recognition systems.
Duration is the duration of the gait segment in seconds.
Median Absolute Deviation (MAD) is a robust measure
of statistical dispersion [13].
Average Absolute Variation (AAV) is found as:

AAV =
N−1∑
i=1

|si+1 − si|
N

,

where N is the number of samples in the gait segment,
and si is the i-th sample in the segment. AAV has
been previously used for human fall detection and gait
analysis [10,14,15].
AC-C1 is the autocorrelation coefficient at the first

dominant period, and it is used to evaluate the
regularity among consecutive steps [16]. Unbiased
autocorrelation coefficients are calculated as follows:

ACk =
1

N − k

N−k∑
i=1

si ∗ si+k,

where ACk is the k-th unbiased autocorrelation
coefficient; N is the number of acceleration samples in
the gait segment; si is the i-th sample minus the mean

of the samples in the gait segment. The coefficients are
then normalized to one at zero lag (AC0 = 1). Finally,
the dominant periods in the autocorrelation signal are
found by means of a peak detection algorithm.

2.3. Linear LogitBoost Regression (LLR) clas-
sifier – gait instance classification

The classifier used for the identification of gait
instances is based on multinomial logistic regression.
In particular, the technique used in this paper relies
on the LogitBoost algorithm to fit linear regression
functions to a logistic transformation of posterior
class probability [17, 18]. Hereafter, we refer to this
classification technique as Linear LogitBoost Regression
(LLR). The idea behind LLR is briefly described in the
next paragraph.

In a problem with J classes, let us define x as the
feature vector extracted from an observed event to be
classified (input variable). LLR models the posterior
class probability of class j given x as

pj(x) =
eFj(x)∑J
k=1 e

Fk(x)
, j = 1, . . . , J (1)

where Fj(x) is a linear regression function. Fj(x) is
thus described by a vector of C regression coefficients
βj , where C is the number of features, and by an
additive value αj :

Fj(x) = αj + βj · x.

Building the classification model consists in fitting
the J regression functions, one per each class in the
problem. In LLR, fitting is performed by means of
the LogitBoost algorithm as described in [17]. After,
the class probabilities of an unseen instance can be
estimated using Equation (1). In the specific context
of gait-based identification, the input variable x is a
gait instance, and a linear regression function Fj(x) is
fitted for each user j in the dataset (user identity is the
class to be recognized).

In Section 3.2 we demonstrate that LLR achieves
high classification accuracy in the context of gait-based
identification. In addition, in Section 4 we show that
LLR enables real-time classification of gait instances on
miniaturized devices with limited RAM.

2.4. Identification

The final step in gait-based identification consists in
the technique used to interpret the class probabilities
provided by the LLR classifier and actually produce
an identification output. In this study, two different
approaches are defined and evaluated: single-instance
and multi-instance identification. In single-instance
identification the output is based on a single
gait instance and its respective class probabilities.
Instead, multi-instance identification aggregates the
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class probabilities of multiple instances belonging to the
same user to reduce identification errors.
More specifically, three identification techniques are

evaluated: one based on the single-instance approach,
and two slightly different techniques based on the multi-
instance approach.

2.4.1. Single-instance identification technique
The single-instance technique for identification is very
simple. The class probabilities produced by the LLR
classifier are directly used to produce an identification
output. This is achieved by selecting the user j∗ with
the highest class probability:

j∗ = arg max
j

pj(x).

In the single-instance technique, an identification
output is produced as soon as a single gait instance
is found. This ensures fast identification, but may lead
to sporadic errors if the user is not walking according
to his/her usual gait pattern.

2.4.2. Multi-instance identification techniques (basic
and adaptive)

In multi-instance identification, the system delays
identification until a predefined number of gait
instances have been gathered. By reducing the
frequency of identification outputs, the system is able to
reduce errors and achieve higher identification accuracy.
The instances must belong to the same user, and thus
the device must be capable of inferring that the user
has not changed during the data collection process.
For example, this assumption can be made in case of
bursts of gait activity with back-to-back gait instances.
Alternatively, a proximity sensor or acceleration-based
techniques may be exploited to automatically detect
when the user might have changed.
A multi-instance identification technique is described

by: (i) the size of the window of instances used for
identification (window size parameter); (ii) a function
to aggregate the class probabilities produced by LLR
for each instance in the set; (iii) a rule used to perform
identification based on the aggregate class probabilities.
Two slightly different multi-instance techniques are

proposed and evaluated: basic and adaptive multi-
instance identification. Both techniques collect a
window of consecutive instances with predefined size,
and single-instance class probabilities are averaged in
order to aggregate LLR results. The two techniques
actually differ in the rule used to produce an
identification output based on the aggregate result.
The basic approach performs identification by

choosing the user with the highest probability,
according to the average class probabilities found over
the window of gait instances. LetW be the window size,
and X = {x1, x2, ..., xW } the set of gait instances in the
considered window. A set of class probabilities for user
j is then calculated as Pj = {pj(x1), pj(x2), ..., pj(xW )}.

The average value p̄j = avg(Pj) is computed for all the
users. Finally, the user j∗ with the highest average class
probability is found as

j∗ = arg max
j

p̄j .

Figure 2(a) illustrates how the technique works with
an example. For the sake of simplicity, in the presented
example there are four users in the system, and the
window is composed of three instances. It is also
supposed that the instances actually belong to user
1 (ground truth). The first window – comprising
instances from number 1 to number 3 – leads to an
identification error, because user 2 has the highest
average probability over the window. Instead, in
the second window – instances from number 4 to
number 6 – the user is correctly identified. The rate of
correct identification outputs is thus 50% (one correct
identification out of two identification outputs).

The adaptive multi-instance technique starts by
finding the average probabilities over a fixed-size
window, like in the basic approach. However, this
time there is an additional test to decide whether the
current window is suitable for reliable identification.
More precisely, the difference (gap) between the
highest probability and the second-highest probability
in the window is found. Only if the gap is
above a predefined threshold, identification is actually
performed by choosing the user with the highest
probability. Conversely, when the gap is below the
threshold, identification is delayed until a new gait
instance is found. When a new instance is available,
the window is moved forward by removing the oldest
gait instance and the same procedure is repeated.
More formally, the average probability p̄j for user j
is calculated in the same way as in the basic multi-
instance method. Let us define P̄ = {p̄1, p̄2, ..., p̄J},
where J is the number of users. Then, m′ = max(P̄ )
and m′′ = max(P̄ \ m′) are computed. Only if the
gap = m′−m′′ is higher than a predefined threshold, the
procedure returns the user j∗ with the highest average
class probability as the identification output.

Figure 2(b) illustrates how the adaptive technique
works, using the same example shown for the basic
technique. Again, it is supposed that the window size
is three instances and that all the instances belong to
user 1. The gap threshold is 60%. Differently from
the basic technique, this time the first window does not
lead to an error, because it is not used by the system
to produce an identification output. Indeed, the gap
between the highest probability (user 2, 43%) and the
second-highest probability (user 1, 41%) is far below
the required threshold. The second window includes
instances from number 2 to number 4 (with respect to
the first window used, instance number 1 is discarded
and the system adds a new instance to the window).
The second window produces a correct output (user 1
is leading by a 62% gap). The system is thus capable
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(a) Basic multi-instance identification (b) Adaptive multi-instance identification

FIGURE 2. Multi-instance identification example with the basic (a), and adaptive (b) techniques.

of producing a correct identification output after four
instances, without identification errors.
The gap between the two leading probabilities

indicates whether there is a clear winner in terms of
classification. When the user is walking according to
his/her usual pattern, consistent identification results
over consecutive instances are expected, marked by
a relatively high gap. Hence, by analyzing the gap
the system is able to understand when the currently
available window of samples does not represent a
reliable input for identification, and the identification
output should be delayed to reduce the occurrence of
identification errors.

3. EXPERIMENTAL SETUP, RESULTS
AND DISCUSSION

In this section we investigate how the gait-based iden-
tification method performs with real-world acceleration
data. More precisely, the following subsections present:
(i) the wearable device used in the experiments; (ii)
the data collection campaign and the results of walking
detection; (iii) the results of LLR classification and a
comparison with some other classification schemes; (iv)
the results obtained by the three identification tech-
niques – single-instance, basic multi-instance, and adap-
tive multi-instance. Finally, the results are discussed.

3.1. Wearable device

The device used in the experiments is a Shimmer2r [19],
embedding a TI MSP430 microcontroller (up to 8 MHz
clock, 10 KB RAM) and a Freescale MMA7361 tri-axial
accelerometer with ±6 g range per axis. A microSD
card is also available for internal data logging up to
2 GB.

TABLE 2. Volunteers’ characteristics.
User Gender Age Height [cm] Weight [kg]

1 F 26 160 55
2 F 26 166 50
3 F 34 170 60
4 F 57 166 66
5 F 61 166 77
6 M 22 168 58
7 M 27 180 75
8 M 28 175 62
9 M 40 177 81

10 M 68 175 95

3.2. Data collection and walking detection
results

Ten volunteers (5 females, 5 males , age 38.9 ± 16.0,
height 170.3 ± 5.9 cm, weight 67.9 ± 13.1 kg) were
involved in a data collection experiment. Gender, age
and physical characteristics of each volunteer are shown
in Table 2. The volunteers carried a Shimmer 2r in a
front trouser pocket for about ten hours on average.
Acceleration was sampled with 51.2 Hz frequency, and
samples were saved on the SD memory of the Shimmer
device, thus enabling repeatable off-line evaluation of
the collected traces.

During data collection, the volunteers performed
their habitual activities without any kind of supervision
or constraint (hereafter, we also refer to the volunteers
as users). Change of footwear was allowed. To
minimize the burden, the volunteers were asked to
roughly annotate performed activities and locations,
using basic labels like Home, Office, Transport, and
Outdoors. Home and Office mainly include short walks
and long intervals of physical inactivity. Transport
is used to indicate the use of personal or public
transportation. Outdoors indicates time spent walking
outdoors or briefly visiting bars/shops.
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TABLE 3. Experiment details and walking detection results.
User Duration [h] Home % Office % Transport % Outdoors % Segments

1 8.2 0 76.6 4.1 19.3 489
2 11.9 0 82.9 0 17.1 694
3 9.4 7.1 68.7 11.4 12.8 135
4 9.2 94.7 0 2.2 3.2 174
5 8.8 100 0 0 0 115
6 10.6 82.4 0 0 17.6 454
7 10.0 0 83.8 7.3 8.8 410
8 12.3 54.3 36.7 9.0 0 329
9 9.2 5.9 82.5 8.8 2.8 134

10 8.6 18.9 0 43.6 37.6 139
Average 9.8 36.3 43.1 8.6 11.9 307.3

Table 3 shows some details about the experiments
as well as the results of walking detection. The
second column, Duration, shows the duration in
hours of each experiment – in total ∼ 98 hours of
acceleration samples were collected. Columns from 3
to 6 show the percentage of time spent in the different
activities/locations. The last column, Segments, shows
the number of gait segments detected by the walking
detection algorithm. About 307 gait segments were
detected on average, 3073 in total. Each of these
gait segments consists of eight steps and passed
the regularity tests based on standard deviation and
autocorrelation. A gait segment lasted 4.2 s on average,
while the shortest and longest gait segments lasted 3.3 s
and 5.9 s, respectively. It was verified that the walking
detection algorithm did not detect gait segments when
the volunteers were using transportation, which is a
common issue with simple step detection techniques.

3.3. LLR classification results

The gait segments were processed with the feature
extraction algorithms described in Section 2.2. As a
result, 3073 gait instances were obtained, consisting in
vectors with fourteen features. Each gait instance was
labeled with the ID of the user who produced it, and
the ID itself represents the class of our classification
problem. Ten-fold cross-validation was then used
to train the LLR classifier and, at the same time,
obtain class probabilities for each gait instance in
the dataset. Since the number of instances produced
by different users is imbalanced (some users walk
frequently, whereas others are much more sedentary),
a technique based on random sampling was applied
to each training fold in order to obtain homogeneous
training sets [20].
The class probabilities were then used to find the

classification results obtained by the LLR classifier, in
terms of average recall. For a given class c, the recall
indicates the likelihood that an instance belonging to
that class will be classified correctly:

recallc =
true positivesc
instancesc

,

where true positivesc is the number of instances
belonging to c that are classified correctly, and
instancesc is the total number of instances belonging
to c. The average recall for LLR was 95.3%.

The LLR classification performance was compared
against some other widely-used learners, namely Neural
Network, Random Forest, Rotation Forest, and Nearest
Neighbor. For a fair comparison, the feature selection
method mentioned in Section 2.2 was re-executed for
each classification scheme, so as to find scheme-specific
feature sets. The same evaluation procedure based on
ten-fold cross-validation was then used.

Results are shown in Figure 3, in terms of average
recall and number of selected features. LLR and Neural
Network achieved the highest recall, while the number
of selected features does not vary significantly among
the considered learners.

3.4. Identification results

We here present the results related to the three
proposed identification techniques: single-instance
identification, basic multi-instance identification, and
adaptive multi-instance identification. The metric used
to evaluate the identification results is the Correct
Identification Rate (CIR):

CIRj =
Correct Identificationsj
Identification Outputsj

,

where Correct Identificationsj and Identification Out-
putsj are the number of correct identifications and the
total number of identifications made for user j, respec-
tively.

3.4.1. Single-instance identification
The single-instance identification technique produces
an identification output for each gait instance. After
that the LLR classifier has generated the class
probabilities, identification is performed by simply
assigning the instance to the user with the highest
probability. Therefore, the CIR in this case corresponds
to the proportion of gait instances belonging to a
specific user that were classified correctly, and is thus

The Computer Journal, Vol. ??, No. ??, ????



8 G. Cola, M. Avvenuti, A. Vecchio

(a) (b)

FIGURE 3. Classification schemes comparison in terms of average recall (a), and number of selected features (b).

TABLE 4. Single-instance identification results.
User CIR %

1 97.2
2 91.3
3 93.8
4 97.9
5 97.0
6 92.5
7 96.7
8 97.7
9 91.6

10 96.9
Average 95.3

equivalent to the classification recall mentioned in
Section 3.3.
Per-user identification results achieved by the single-

instance technique are reported in Table 4 in terms of
CIR. The proposed technique achieved more than 90%
correct identifications on all the users in our dataset,
and the average result was 95.3%.

3.4.2. Basic multi-instance identification
The basic multi-instance technique finds the average
class probabilities over a window of gait instances
belonging to the same user, and performs identification
by choosing the user with the highest probability. This
technique was applied to each user’s data – the gait
instances, with their respective class probabilities, were
grouped into windows according to their chronological
order.
Per-user results are shown in Table 5 according

to different window size values. For this evaluation,

we actually used a sliding window to consider all
the possible orderly sets with a specific window size,
each window representing a possible input to the
basic multi-instance technique. The second column
(window size = 1) reports the same result shown in
Table 4 (single-instance identification) and is shown
here for direct comparison with the results achieved as
the window size is increased. For most users it was
possible to achieve perfect accuracy using less than 8
gait instances. For user 2, however, 40 gait segments
per window were required to avoid errors.

3.4.3. Adaptive multi-instance identification

The adaptive multi-instance technique produces an
identification output only if the probability gap
between the users with the highest and second-highest
probability values is above a predefined threshold.
Otherwise, the oldest gait instance in the window is
discarded and the procedure is repeated as soon as a
new gait instance is found.

We tested the adaptive technique on our dataset
using a window size of 6 gait instances and a gap
threshold equal to 60%. These thresholds were found
empirically. Results are shown in Table 6. The second
column indicates the rate of correct identifications
achieved with this method, while the third, fourth, and
fifth columns indicate the average, standard deviation,
and worst-case number of gait instances read before
producing an identification output, respectively. This
technique achieved perfect identification for all the
users, requiring just 30 seconds of walking data on
average (less than 7 gait instances, each lasting about
4 s).
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TABLE 5. Basic multi-instance identification results.
User CIR % with increasing window size

1 2 4 6 8 10 20 30 40

1 97.2 99.2 99.8 100 100 100 100 100 100
2 91.3 94.5 96.4 97.0 97.4 97.7 98.9 99.5 100
3 93.8 96.1 99.4 100 100 100 100 100 100
4 97.9 99.1 100 100 100 100 100 100 100
5 97.0 100 100 100 100 100 100 100 100
6 92.5 96.0 98.1 98.3 98.9 100 100 100 100
7 96.7 98.4 99.3 99.9 100 100 100 100 100
8 97.7 99.1 100 100 100 100 100 100 100
9 91.6 94.0 98.4 100 100 100 100 100 100

10 96.9 98.9 100 100 100 100 100 100 100
Average 95.3 97.5 99.1 99.5 99.6 99.8 99.9 99.9 100

TABLE 6. Adaptive multi-instance identification results.
User CIR % Required gait instances

Average St. dev. Worst case

1 100 6.1 0.5 13
2 100 8.0 6.8 53
3 100 6.5 1.7 18
4 100 6.1 0.7 11
5 100 6.0 0.2 12
6 100 7.0 2.6 25
7 100 6.2 1.0 14
8 100 6.3 1.5 23
9 100 7.4 3.1 26

10 100 6.1 0.7 11
Average 100 6.6 1.9 20.6

3.5. Discussion

Ten volunteers were involved in this study. This
number is in line with other works in the field of gait-
based identification [21–25]. However, differently from
previous works, gait segments were extracted during the
users’ daily routine and without predefined constraints
such as footwear, terrain/surface, or pace. These gait
segments inevitably include a variety of gait patterns
for each user, for example due to walking at different
speed or on a different surface. This realistic setting
makes the identification process much more challenging
with respect to considering gait segments produced in
controlled environment.
To tackle the presence of highly irregular gait

patterns in real-world settings (for example produced
while climbing stairs), the walking detection algorithm
included filters based on standard deviation and
autocorrelation. Notwithstanding these filters, it
was possible to provide the learner with frequent
“identification opportunities”. Indeed, more than 100
gait segments per user were found in about ten hours
of data collection, even for those users who spent most
of their time indoors (e.g., user 4 and 5).
Acceleration features with low memory and computa-

tional requirements were considered for the feature se-
lection process. Given the classification results achieved
by different learning schemes (average recall > 90%),

these features proved able to capture the most relevant
characteristics from each user’s gait pattern. Among
considered learners, LLR showed the highest classifica-
tion recall (95.3%).

The single-instance approach achieved more than
90% CIR for all the users in the dataset. This result is
in line with the best performing algorithms in the field
of gait-based identification, which typically relied on
short gait experiments made in controlled environment.
Single instance identification ensures fast identification,
as it only requires eight consecutive steps.

In contexts where identification errors must be
further reduced, the proposedmulti-instance techniques
are able to minimize the probability of identification
errors. The basic multi-instance technique exploits a
window of consecutive gait instances in order to perform
identification on the average class probabilities. Thanks
to the high single-instance CIR, by using 10 consecutive
instances it is possible to eliminate errors for almost
all the users (see Table 5). However, user 2, despite
a single-instance CIR higher than 90% and similar to
user 9, required a window with 40 consecutive instances
to actually eliminate all the errors. The reason behind
this result is that abnormal gait patterns may occur
in bursts lasting a few minutes, for example when
the user is temporarily carrying a load or performing
any other unusual activity that the classifier has not
learned properly. The use of a large window of
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instances somehow fixes the problem, but has two
main drawbacks: (i) using a relatively large window is
unnecessary in most cases, and may add a delay to the
identification process; (ii) a longer than expected burst
of abnormal activity may still lead to identification
errors.
The adaptive multi-instance technique addresses

these shortcomings. Results have shown that the
adaptive approach requires less than 7 gait instances,
on average, to achieve perfect identification for all the
users. That corresponds to less than 30 seconds of
gait data (each gait segment lasts for about 4 seconds).
When bursts of abnormal gait were found, identification
was properly delayed in order to avoid errors, until
the required level of confidence (probability gap) was
reached. The worst case occurred, as expected, for
user 2. Nevertheless, the technique achieved correct
identification in about 30 seconds of gait on average,
and in less than 4 minutes in the presence of the above
mentioned burst of unusual gait activity.
To the best of our knowledge, this is the first time

that a self-contained system for gait-based identification
– thus including all the necessary components, from
walking detection to classification – has been tested
on data collected in uncontrolled environment. The
results shown in this section prove the soundness of
the proposed approach, and suggest that this technique
may be effectively used for long-term and trustworthy
identification of users in real-word settings.

4. IMPLEMENTATION AND EVALUATION
OF POWER CONSUMPTION ON A
MINIATURIZED DEVICE

In this section we show that the proposed techniques
for gait-based identification can be implemented and
executed on a miniaturized device such as the
Shimmer 2r. In particular, the Shimmer embeds a
TI MSP430 microcontroller with 8 MHz clock, 10 KB
RAM, 48 KB flash memory, and a 450 mAh battery.
In the next subsections, we first demonstrate that

the required computations can be executed within
the required time and memory constraints. Then,
we compare the proposed solution against continuous
streaming of samples to an external device, in terms of
energy consumption and battery duration.

4.1. On-node implementation and feasibility of
real-time processing

The proposed method was implemented as a TinyOS
2.x event-driven application. TinyOS is characterized
by two fundamental computational abstractions: async
events and tasks. Tasks are executed in the background
using a FIFO policy and are non-preemptive. Con-
versely, async events interrupt task execution when they
are raised. Events can also schedule new tasks for later
execution.

In our application there is a single async event,
which is raised each time a new sample is read from
the accelerometer (every ∼ 19.5 ms, corresponding to
51.2 Hz sampling frequency). This event is responsible
for: (i) correcting the raw acceleration values of the new
sample according to calibration parameters; (ii) saving
the new sample into a circular buffer, by overwriting
the oldest sample; (iii) updating the walking detection
finite state machine, which implements Gait Segment
Detection. Acceleration values coming from the ADC
are corrected by using six calibration parameters, two
for each axis, to compensate the slightly different
scale and offset at rest (small differences between
accelerometers are introduced by the manufacturing
process). Corrected acceleration values are represented
as 16-bit integers to reduce the computational load
(with respect to using floating point). The circular
buffer used to store the samples can contain up to 512
integers per each axis, corresponding to 10 seconds of
data.

Considering the flowchart representation described in
Figure 1, the async event only implements the first
subtask of Walking detection – Gait Segment Detection.
The rationale is that only this subtask can be executed
in a time significantly shorter than the sampling period,
and can thus be implemented in an atomic block of
code. Actually, Gait Segment Detection is performed
in less than 1 ms. Conversely, the autocorrelation-
based filter requires more than a sampling period to
be executed and must be implemented in a background
task.

When a possible gait segment is detected, the async
event schedules a new task. This task is responsible
for performing the remaining computations required for
identification, namely Autocorrelation-based filtering,
preprocessing, feature extraction, LLR classification,
and identification. The task is interrupted each time
a new sample is read. To ensure that the system is able
to keep up with the stream of acceleration data and
perform real-time analysis, it is key to satisfy two time
constraints: (i) a gait segment must be processed in
less than the duration of the gait segment itself; (ii) the
task must be completed before the gait segment under
analysis is overwritten with new samples in the circular
buffer.

As described in Section 3.2, the duration of gait
segments in our experiments ranged from 3.3 to 5.9 s,
while the average duration was 4.2 s. With a
conservative approach, our algorithm was tuned to
accept gait segments lasting up to 7.0 s. Taking into
account the size of the circular buffer (10 s), it must
be verified that the longest possible gait segment (7 s)
is processed in less than three seconds, thus ensuring
that the gait segment’s samples are processed before
overwriting occurs in the circular buffer. According
to our experiments, the Shimmer’s MCU is capable of
performing single-instance identification on the longest
gait segment in about one second. It is thus able to
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keep up with the stream of acceleration samples and
perform real-time identification of users. The additional
processing required by the multi-instance identification
techniques is negligible.
The entire application requires less than 8 KB of

RAM with single-instance identification and 10 users.
More specifically, the LLR classifier model requires
only 60 bytes per class/user (fifteen 32-bit coefficients
per class/user), and thus a total 600 bytes in our
10-user scenario. In multi-instance identification, it is
necessary to save the class probabilities of window-size
instances. With 10 users, each set of class probabilities
is composed of ten 16-bit integers, corresponding
to 20 bytes. For example the adaptive method,
which requires 6 instances per window to achieve
perfect identification, would lead to an additional RAM
occupation of just 120 bytes.
This evaluation demonstrates that real-time execu-

tion of the proposed method on Shimmer2r devices is
feasible in terms of both memory and processing re-
quirements.

4.2. Power consumption – on-node processing
vs radio streaming

The power consumption on the Shimmer device was
evaluated according to two different implementation
strategies: (i) On-node Processing, the strategy
proposed in this paper, where all the required
processing is performed on the wearable device; (ii)
Radio Streaming, the opposite approach, where the
wearable sensor is only responsible for collecting
acceleration data and wirelessly transmits samples
to an external device. In order to find the power
consumption associated with each strategy, we first
evaluated the power consumption associated to all the
possible subtasks – the results are shown in Table 7.
The Sampling subtask consists in collecting acceler-

ation samples at 51.2 Hz and saving them into a cir-
cular buffer. According to our experiments, Sampling
requires ∼ 3.0 mW. This baseline consumption cannot
be avoided, regardless of the strategy adopted.
Radio represents the wireless transmission of samples

collected at 51.2 Hz. It was implemented using the
CC2420 IEEE 802.15.4 radio module of the Shimmer
device. According to the CC2420 specifications,
power consumption was estimated considering a
52.2 mW consumption while transmitting. A simple
transmission protocol was implemented to ensure
reliable transmission of samples. The radio is switched
on every 5 s to send the samples collected in the last
interval. The receiver is supposed to be always listening,
and sends an acknowledgement to confirm the start
and the end of each communication. The average
consumption is ∼ 2.9 mW.
Gait Segment Detection (GSD) is the first subtask

performed to detect gait segments suitable for
identification, as described in Figure 1. GSD requires

∼ 0.5 ms of processing for acceleration sample, leading
to an average consumption of ∼ 0.4 mW.

The remaining subtasks – Autocorrelation-based
Filter (ACF), and Gait-based Identification (GI) –
are applied only to detected gait segments, and thus
consume energy only when the user is walking. More
precisely, ACF is applied to each detected gait segment,
while GI is applied only to those segments that are
not filtered out by the autocorrelation-based filter.
For these two subtasks, Table 7 shows the estimated
power required during walking activity. The actual
identification technique – single-instance or multi-
instance – is not specified because the difference in
terms of power consumption is negligible.

In the Radio Streaming approach two subtasks –
Sampling and Radio – are executed continuously,
regardless of what the user is currently doing.
Conversely, On-node Processing leads to a different
consumption depending on the user’s behavior, as
shown in Table 8. When the user is idle (i.e., not
walking), the device continuously samples acceleration
and searches for a new gait segment (S+GSD subtasks).
When the user actually walks and a gait segment is
detected, ACF is performed to test whether the gait
segment is regular enough to be used for identification.
Only in the latter case, the extra processing required
for gait-based identification is actually executed.

Table 9 shows the average consumption and
the estimated battery duration relative to the two
considered implementation strategies. The estimation
of Radio Sampling consumption is simply the sum of
the consumptions due to sampling acceleration and
transmitting the samples via radio. Instead, the average
consumption relative to On-node Processing was found
considering the average number of gait segments per
hour produced by our volunteers, taking into account
also those gait segments that were filtered by the ACF
subtask.

The results confirm that the proposed strategy –
On-node Processing – is feasible in terms of power
consumption. Indeed, the expected battery duration
is about 70% longer than the solution where all the
samples are sent to an external device. In addition
to improving battery duration, on-node processing
enables identification even when the user is not in the
transmission range of a gateway.

5. RELATED WORK

In this section we summarize the most relevant work
concerning identification by means of mobile devices.

Gafurov et al. carried out pioneering work about gait-
based identification using a wearable accelerometric
sensor [26]. Fifty users were involved in the
experiments. Each user walked for 20 meters while
wearing a tri-axial accelerometer (operating at 100 Hz)
in his/her trouser pocket (with one exception: a
person was monitored by attaching the sensor to her
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TABLE 7. Subtasks and associated consumption.
Subtask Description Average consumption

Sampling (S) Sampling acceleration at 51.2 Hz 3.0 mW
Radio (R) Radio transmission of samples 2.9 mW
Gait Segment Detection (GSD) Detection of gait segments (8 consecutive steps) 0.4 mW
Autocorrelation-based Filter (ACF) Filter to remove irregular gait segments 0.8 mW
Gait-based Identification (GI) Preproc., feature extraction, classification, identification 1.8 mW

TABLE 8. On-node Processing approach consumption according to user’s activity.
Activity Subtasks Average consumption

Idle S+GSD 3.4 mW
Walking (filtered) S+GSD+ACF 4.2 mW
Walking (identification) S+GSD+ACF+GID 6.0 mW

belt). Six gait instances were collected for each person:
four walking normally, and two carrying a backpack.
Analysis was then executed on a PC. Results show
a recognition rate of ∼ 86% both with and without
backpack. Such performance was obtained when using
a method based on computing the average step cycle
and comparing cycles on the base of absolute distance
among samples.

Another prototypical system is described in [21].
Four users were monitored, in terms of tri-axial
acceleration, using a Tmote-Sky node attached near
one of the ankles and with predefined orientation.
Sensor readings, collected at 20 Hz, were wirelessly
sent to a computer where they were analyzed off-line.
Perfect accuracy was obtained using a k-NN classifier
and majority voting. However, the small number
of subjects somehow reduces the significance of the
achieved performance.

In [8] the use of an Android smartphone as a
means for biometric identification is studied. Thirty-six
individuals were enrolled in the study; each individual
performed a set of predefined activities (walking,
jogging, climb up/down stairs) in a supervised
environment. Acceleration was collected at 20 Hz
carrying the device in a front trouser pocket.
Identification was performed off-line on a standard
PC, using two classification techniques (J48 and neural
networks). Results show that walking and jogging are
the most important activities for identification purposes
(they obtained accuracy levels in the ∼ 90−92% range).

Another smartphone-based identification method is
proposed in [22]. Gait data from ten volunteers
were collected using a smartphone placed in a front
trouser pocket. The orientation of the device was
automatically estimated. Each volunteer was instructed
to perform four walks. These gait instances were used
to evaluate the proposed method, based on features
such as frequency, symmetry, range and a similarity
coefficient. Procedures were executed off-line. No
identification errors were produced using a voting
scheme that combined the above mentioned features.

In [23], techniques operating both in time and

frequency domain are compared. Data were collected
with participation of eleven volunteers, using the
accelerometer embedded in a common smartphone.
Sampling frequency was set at ∼ 30 Hz and the
smartphone was fixed, with known orientation, at the
user’s thigh. Twelve short walks (∼ 30 s) were collected
for each volunteer; five of them were used for training
and the remaining ones for evaluating the performance.
Support Vector Machine-based classification achieved
∼ 92% recognition when using features in the frequency
domain, and ∼ 79% when using features in the time
domain.

A method that does not rely on fixed placement
of the sensor is described in [24]. Quantities that
are invariant with respect to orientation, based on
inner product and normalized cosine similarity, are
computed on data collected using both an accelerometer
and a gyroscope. A recognition rate of ∼ 85-87%
was obtained incorporating techniques borrowed from
speaker recognition methods. The dataset comprised
semi-naturalistic traces produced by 20 users on two
separate sessions. Each session consisted in about
fifteen minutes of walking. To measure acceleration, the
users carried a smartphone in a trouser pocket without
constraints in terms of device orientation.

The impact of different walking surfaces on gait
identification is studied in [25]. Five subjects performed
three walks on four different surfaces (ground, grass,
gravel, stone plates); acceleration was collected at
∼ 37 Hz using a smartphone attached to the right hip of
subjects, and with predefined orientation. Continuous
wavelet transformation, dynamic time warping, and
principal component analysis were used to detect gait
cycles, time align them, and estimate similarity. Results
show that gait-based identification remains feasible even
in the presence of different surfaces. The impact of
phone placement is instead analyzed in [27], where 30
subjects were monitored while keeping the device in
their right/left pocket and right/left hand. Determining
phone position before user classification is investigated
as a means to improve the performance of the system.

In [28], a gait recognition technique was implemented
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TABLE 9. Implementation strategies and associated consumption.
Strategy Average consumption Expected battery duration

On-node Processing 3.5 mW 16.1 days
Radio Streaming 5.9 mW 9.5 days

on a commercially available smartphone. Thus, in
contrast with the majority of other systems, both data
collection and analysis were carried out on the mobile
device. The proposed method does not depend on
the orientation of the device, as it uses the Euclidean
norm of acceleration. Samples were collected at
approximately 150 Hz, with the device placed in the
user’s pocket, during three short walks in a controlled
environment. Experiments were carried out with five
known users, and 20 unknown ones (the system is able
to both identify and authenticate users). The true
positive rate ranges from ∼ 72%, when Manhattan
is used as the distance metric and the technique is
executed on the smartphone, to ∼ 89%, when other
distance metrics are considered and executed on a
standard PC.

A number of other works have faced the problem
of authentication, which is solved using techniques
that are similar to the ones used in identification.
In [29] authentication is modeled as a one-class
classification problem, since a model for non-authorized
users cannot be easily built. An approach based
on convex hull was evaluated on data collected using
both a custom wearable system and a smartphone; a
personalized activity recognition module was used to
improve performance. Unobtrusive user authentication
is discussed in [9]: the proposed solution, based on
smartphones, does not assume a predefined position
or orientation of the device, to improve usability. The
study includes an experimental evaluation where eight
subjects were monitored for a relatively long period in
real world conditions.

Unfortunately, the performance indicated for the
above mentioned works cannot be used to directly
compare the different approaches, as they have been
obtained using significantly different datasets (in
terms of number of users, type and placement of
device, length of monitoring, control of environmental
conditions). Nevertheless, they provide a rough baseline
for comparing future systems when operating in similar
settings.

Almost all of the summarized studies evaluated their
methods using datasets made of relatively short traces,
collected in controlled or semi-controlled environments.
To the best of our knowledge the only exception is [9],
which focuses on authentication. With respect to the
problem of identification, the longest traces – about 30
minutes per user – were used in [24]. The reason is due
to the burden imposed on users when collecting long
traces, and to the ease of setup for laboratory sessions.

6. CONCLUSION

Correct identification of users is a key element in a
large number of applications for wearable devices, as it
increases the security and usability of the system. We
have presented a method for gait-based identification
with little requirements in terms of both computational
power and memory. More precisely, the method
has been implemented and executed in real time on
the Shimmer2r platform, which is equipped with a
microcontroller unit running at 8 MHz and with 10 KB
of RAM. Such low requirements, in turn, determine an
extended lifetime on battery-operated devices. Despite
being parsimonious, the proposed method provides
excellent results in terms of correct identification rate
(∼ 95%). Even better results have been achieved
by combining the output associated to a sequence
of gait instances (multi-instance approach), eventually
achieving perfect results. In particular, this can be
obtained by either combining larger and larger sets of
gait instances or by delaying the identification of the
user until a given confidence level is reached.

It is important to highlight that the method has been
evaluated in uncontrolled environments, where the users
were free to move and act without restrictions. The
collected dataset is rather large (3073 gait segments,
∼ 98 hours) with respect to many previous gait-
based identification experiments, thus making the
achieved results particularly significant. To the best
of our knowledge, this is the first time that gait-based
identification is tested in real-world settings. In the
present work, the volunteers carried the device in a
trouser pocket – future work will also consider different
body positions, such as a wrist-worn device.

To encourage further advancements in the field and
enable direct comparison with the proposed method,
the acceleration traces are publicly available at the
following address:
http://vecchio.iet.unipi.it/gaitanalysis.
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