
Supporting the development of network-aware
reactive applications on smartphones

Gloria Ciavarrini, Luciano Lenzini, Valerio Luconi, Alessio Vecchio
Dip. di Ingegneria dell’Informazione, University of Pisa, Pisa, Italy

e-mail: {gloria.ciavarrini, valerio.luconi}@for.unipi.it, {l.lenzini, a.vecchio}@iet.unipi.it

Abstract—In the last years, research about context-aware
systems has been particularly intense. Nevertheless, most of the
proposed approaches and systems failed to flow from research to
industry. In this paper we propose ANARC, a library that eases
the development of network-aware applications for smartphones.
ANARC does not try to cope with all the possible meanings and
variations of context, it instead focuses on a specific restriction:
the network and associated properties. ANARC adopts a rule-
and trigger-based approach: when the network context matches
the one described in a rule, the corresponding notification is sent
to the application level. Examples of use of the proposed library
– for mapping network coverage, detecting roaming regions
of mobile operators, and monitoring WiFi access points – are
included to demonstrate the benefits of the proposed approach.

I. INTRODUCTION

The personal nature of smartphones and the intimate re-
lationship with their owners fueled the adoption of these
nowadays ubiquitous devices as the de-facto platform for
context-aware applications. In this area, research mostly con-
centrated on two directions: i) middleware systems to support
the development of context-aware applications [1], [2] and ii)
the definition of methods and techniques useful to represent
and manage context-related information [3], [4], [5].

A popular definition of context is the one provided by
Dey and Abowd [6]: any information that can be used to
characterize the situation of an entity, where an entity can be
a person, place or object that is relevant in the interaction
between users and applications. Context-aware applications
use such information to customize services and to provide a
better user experience. In many cases, context-aware systems
include reasoning functionalities, to deduce new and/or higher
level information from raw data. The reader is forwarded
to [2] for a survey about context-aware mobile networking
and additional references on such topic, whereas a general
background about context modeling and reasoning techniques
can be found in [7].

Nevertheless, despite the large amount of research carried
out in the last years and the ubiquitous diffusion of smart-
phones, widespread adoption of context-aware applications
is still not a reality. One of the possible reasons for this
slow transition from the research world to the industrial
environment is, according to the authors, the lack of easy-
to-use mechanisms for incorporating contextual information
at the application level.

A. Background

Here we recall some of the most important systems that sup-
port programming and execution of context-aware applications
on smartphones.

ContextPhone is a prototyping platform for context-aware
mobile applications [8]. The design goal and philosophy of
ContextPhone is to provide context as a resource and to
enable rapid application development. To fill the gap between
operating system functionalities and the needs of application
developers, ContextPhone provides modules that abstract sen-
sors, system services, and communication. ContextPhone was
available for Symbian-based phones.

WhozThat is a system that ties together social networking
and context-awareness with smartphones [9]. In this case,
the interaction between the physical and the virtual world is
bidirectional: when a user meets other people, the devices co-
operate to discover their social network IDs, then information
about users, downloaded from Facebook, LinkedIn, etc., is
used to discover possible common interests. This information
is also used to customize the physical context that surrounds
them (e.g. to play music that is enjoyable for all of them).

Medusa is a programming framework for crowdsensing ap-
plications that provides mechanisms for acquiring sensor data
from multiple smartphones [10]. In particular, with Medusa,
recurrent crowdsensing operations can be compactly expressed
using a high-level programming language. Further, a dis-
tributed runtime system for task execution provides coordina-
tion mechanisms between smartphones and cloud components.
Support for concurrent and asynchronous execution enables
high throughput in terms of tasks.

PRISM is a platform for remote sensing using smart-
phones [11]. The goal of PRISM is to provide a flexible sub-
strate for participatory sensing applications on a smartphone-
based platform. It allows developers to package their applica-
tions as executable binaries and automatically propagates the
application code to an appropriate set of smartphones based
on a set of predicates. Users who would like to participate
have to install the PRISM runtime, a middleware that runs on
top of an existing OS, on their smartphones and register their
device with the PRISM infrastructure.

USense is a utility-based smartphone middleware for ex-
ecuting community-driven sensing tasks [12]. It provides
client-side mechanisms, which enable a unified sensing ar-
chitecture, and expressive constructs, which make possible

Fig. 1: ANARC architecture

efficient control and coordination of the sensor network.
USense operates between applications and sensors and carries
out crowd-sensing tasks by combining back-end application
requirements, users’ preferences, and available resources on
smartphones.

B. Motivation

To fill the gap between network-aware applications and the
functionalities provided at the OS level, we designed and
implemented ANARC. ANARC is a Network Aware library
for Reactive Computing which, instead of facing the multiple
meanings of context, operates in a single specific domain
(network-awareness) and eases the development of network re-
active applications. ANARC acts as a bridge between complex
existing approaches and the real necessities of designers and
programmers. In fact, a large fraction of existing systems are
based on ontologies and provide sophisticate and expressive
methods to describe context entities and infer knowledge. We
believe that, in some cases, these mechanisms can be too far
from the necessities of developers of smartphone apps, and
that a library, which can be integrated with limited effort,
can be useful to increase the context awareness of nowadays
smartphone software.

Even though the primary goal of ANARC is to support the
development of network reactive applications, it is important to
notice that in several situations network-context can be used to
gain more general information. For instance, if a smartphone is
connected to a given access point during the night hours more
or less regularly, this network information can be used to infer
with reasonable confidence that such access point is located at
user’s home. Then, subsequently, visibility of the same access
point can be used to infer that the user is at home and to
trigger specific actions.

II. ANARC

ANARC is a runtime component that encapsulates all the
intricacies related to the detection of network events and
context changes, easing the production of network reactive
applications. With ANARC, programmers specify the context
properties of interest in a simple way, and receive notifications
about relevant changes. Figure 1 describes the architecture of
the system and its interactions with applications and lower
layers.

Applications express their interest in receiving notifications
about desired conditions and/or changes in network context
by registering one or more rules to ANARC. Rules can be
defined using a set of predefined properties. This set is mostly
composed of network-related properties, since ANARC is
devoted to support network-aware applications, but it also
includes hardware-related and position-based properties since,
in several cases, these appeared to be relevant in the considered
reference scenarios. All these properties are exported and
managed by specific subcomponents, which span the OS and
hardware layers.

The Rule evaluator component parses the rules received
from applications and then asks the appropriate domain-
specific modules to start monitoring the involved properties
and to notify about changes. When the conditions expressed by
a rule are met, the evaluation component notifies the associated
application, which in turn executes a registered handler.

A. Rules

Each rule is composed of the following parts:
• Condition It specifies the network context the application

considers of interest. Context conditions are expressed
as simple boolean expressions, where network properties
can be combined through common boolean operators and
some special functions.

• Changing properties Applications can receive notifica-
tions when a monitored property changes.

• Action This element specifies the type of notification the
application wants to receive when the condition becomes
true or when a monitored property changes its value. The
possibility of associating a different action to every rule
is particularly useful when registering more rules. In this
way the application can react differently according to the
triggering rule. This element can also include a list of
properties whose value is transferred to the application
when the action is triggered.

Several rules can be submitted at the same time to ANARC
by enclosing them within a list. Table I shows a list that
includes the prototype of three rules. Each rule is formed by a
when element and by an onChange element. Both elements
are optional: the first rule includes only the when element,
whereas the second rule comprises only the onChange ele-
ment.
when is in turn composed by three parts: i) condition,
a boolean expression that specifies the interests of applica-
tions; ii) doIfTrue, that specifies the action that has to

TABLE I: A list of rules

<ruleList>
<rule>
<when>
<condition>

boolean condition
</condition>
<doIfTrue> action </doIfTrue>
<doIfFalse> action </doIfFalse>

</when>
</rule>

<rule>
<onChange>
<property>

property to be monitored
</property>
<do> action </do>

</onChange>
</rule>

<rule>
<when>
<condition>

boolean condition
</condition>
<doIfTrue> action </doIfTrue>
<doIfFalse> action </doIfFalse>
<onChange>
<property>

property to be monitored
</property>
<do> action </do>

</onChange>
</when>
<propertyList>
<property>

property name
</property>
<property>

...
</property>

</propertyList>
</rule>
</ruleList>

be performed when the condition becomes true; and iii)
doIfFalse that specifies the action to be performed when
the condition becomes false. In particular, the specified actions
are triggered each time the associated condition becomes true
or false respectively.
onChange can be used to specify a property to be monitored
(property element) and the action the application wants to
receive when the property changes. The optional threshold
element can be used for those properties that have continuous
values. In this case the application is notified only if the
observed variation is larger than the provided threshold.

If onChange is contained within a when element, as it
happens in the third rule listed in Table I, then the property
under observation is monitored by ANARC only when the
associated condition becomes true. This allows programmers
to combine the above mechanisms and limit the notifications
an application receives to specific restrictions of the context.

The propertyList element is used to specify the set of
properties whose values must be transferred to the application
when the action is triggered. These values can be used by the
application to customize its operations.

B. Properties

Table II lists some of the observable properties and context
elements that can be combined to form a condition. Properties
are classified according to their domain: network, hardware,
and position (geography). The three domains are identified
by the net, hw, and geo top-level prefixes. Other subdomains
are used to group properties and provide a namespace-like
mechanism. For instance, the net.wifi.RSSI property indicates
the received signal strength indicator as registered by the WiFi
interface, whereas the net.cellular.RSSI property concerns the
received signal strength indicator as registered by the cellular
interface.

ANARC provides a number of operators and pre-built
functions that can be used to specify conditions. Operators are
useful, for instance, to compare properties against thresholds
or other values that developers consider of interest. Functions
are used to perform some common operations that are difficult
to express as combinations of logical and arithmetical opera-
tors (e.g., checking if an IP address is within a given range or
verifying if current position belongs to a geographical area).
Some of the available operators and functions are listed in
Table III.

Table IV shows an example rule that tests if the device is
using a data connection and if the signal strength is greater
than a given threshold (6). When the boolean condition be-
comes false no action must be executed. On the contrary, when
the boolean condition becomes true, the it.unipi.iet.myaction
action is launched and monitoring of cell ID variations is
started. The property list specifies the contextual values the
application wants to receive whenever the action is triggered
(in this case: latitude, longitude, type of connection, and
operator name).

III. IMPLEMENTATION

As mentioned, the ANARC architecture comprises a rule
evaluator and a set of property monitoring modules. At this
time, three different property monitoring modules are available
(one for each domain): the network module which monitors all
the network properties, the hardware module which monitors
the properties related to the smartphone’s hardware, and the
position module which monitors the properties related to the
geographic position of the smartphone. When one of these
components detects a change in one or more properties, it
notifies the rule evaluator about the new value of the changed
properties.

As the name suggests the rule evaluator component mon-
itors state changes of entire rules, and fires the associated
actions when needed. The core of the rule evaluator is a set of
hash tables in which rules and properties are stored. Every rule
submitted to ANARC is tagged with a unique Rule ID (RID).
Each property is the key of a map which associates a property
to all the RIDs of the rules containing that property. When a
property monitoring module detects a change in the state of
a property, it notifies such variation to the rule evaluator. For
each rule associated to that property, the rule evaluator checks
if the rule’s condition becomes true/false or if an onChange

TABLE II: Some properties

Network domain
net.cellular.gsm.cellID Current GSM Cell ID (CID)
net.cellular.gsm.LAC Current Location Area Code
net.cellular.networkOperatorName Current network operator name
net.cellular.cdma.sysID Current system ID for CDMA networks
net.cellular.cdma.netID Current network ID for CDMA networks
net.cellular.cdma.bsID Current base station ID for CDMA networks
net.ip.address Current IP address assigned to the device
net.networkAccess.status Status of network access (CONNECTED, CONNECTING, DISCONNECTED, etc)
net.networkAccess.connectivityType Type of current network access (WIFI, MOBILE)
net.networkAccess.mobileConnectionType Type of mobile connection (UMTS, HSUPA, EDGE, etc)
net.operator.roamingStatus The device is in roaming (true, false)
net.cellular.RSSI Current RSSI value
net.cellular.ASU Current ASU value
net.wifi.RSSI Current WiFi RSSI value

Hardware domain
hw.wifi.state Status of WiFi interface (DISABLED, DISABLING, ENABLED, etc)
hw.bluetooth.state Status of Bluetooth interface (OFF, TURNING OFF, ON, etc)
hw.data.state Status of data connection (CONNECTED, CONNECTING, SUSPENDED, etc)
hw.battery.state Status of battery (CHARGING, DISCHARGING, FULL, etc)
hw.battery.level Current battery level value.
hw.battery.health Health of battery (COLD, DEAD, GOOD, etc)
hw.battery.plugged Charging type (AC, USB, etc)
hw.gps.status Status of GPS receiver (FIRST FIX, STARTED, STOPPED, etc)

Geographic domain
geo.position.latitude Current latitude value
geo.position.longitude Current longitude value
geo.position.altitude Current altitude value
geo.speed Current speed value

TABLE III: Some functions and operators

Functions
ipRange(ip_to_check, ip_start, ip_end) Checks if ip to check belongs to a continuous IP address range and

if it is between ip start and ip end.
subnet(ip_to_check, subnet, mask) Checks if ip to check belongs to a given subnet/mask.

Operators
num_equals(’numeric value one’, ’numeric value two’) Compares two numbers (equal).
num_gt(’numeric value one’, ’numeric value two’) Compares two numbers (greater than).
num_lt(’numeric value one’, ’numeric value two’) Compares two numbers (lower than).
&& Logical AND
|| Logical OR

action must be launched. If so, it triggers the execution of the
action associated to that rule.

The ANARC library pauses all unnecessary modules as soon
as possible to reduce power consumption (a module can be
paused when all the active rules do not involve any of the
properties monitored by such component).

Currently, ANARC is available for the Android platform.
Communication between applications and ANARC takes place
using Intents, as it is usually done in the Android ecosystem.
On submitting a rule to ANARC, the app receives an identifier.
Such identifier can be used to deactivate and remove the rule
if needed.

IV. BUILDING NETWORK-AWARE APPLICATIONS WITH
ANARC

In this section we illustrate some network-aware applica-
tions built using ANARC. The first two applications focus on
cellular network coverage and detection of roaming regions.

The third one is aimed at monitoring a set of WiFi access
points.

A. Signal coverage maps

In the last years, several applications dedicated to mapping
the coverage of cellular networks have been presented. Exam-
ples include Portolan Network Tools [13], [14], [15], Root-
Metrics CoverageMap [16] or NetRadar [17]. Typically these
application rely on the contribution of users, which manually
run measurements to collect georeferenced samples about
signal quality. However, all these applications are affected by a
common problem: there are areas that are oversampled (where
the majority of users live) and areas that are not sampled at
all (in general rural areas) [18]. Thus, in order to speed up
the collection process and to make it more uniform, it would
be desirable to automate the collection of samples in specific
areas of interest (the undersampled ones) avoiding collection
in already covered areas (the oversampled ones).

TABLE IV: An example: if the device is using a data connec-
tion and if the signal strength is greater than a given value,
monitoring of cell ID is started and myaction is delivered
to the application

<ruleList>
<rule>
<when>
<condition>
equals(net.networkAccess.ConnectivityType, ’MOBILE’)

&& num_gt(net.cellular.ASU, 6)
</condition>
<doIfTrue>
it.unipi.iet.myaction

</doIfTrue>
<onChange>
<property>
net.cellular.gsm.cellID

</property>
<do>
it.unipi.iet.action_cell_id_has_changed

</do>
</onChange>

</when>
<propertyList>
<property>
geo.position.latitude

</property>
<property>
geo.position.longitude

</property>
<property>
net.networkAccess.mobileConnectionType

</property>
<property>
net.cellular.networkOperatorName

</property>
</propertyList>

</rule>
</ruleList>

With the help of ANARC we built an application that
automatically collects ASU (Arbitrary Strength Unit - a value
proportional to the received signal strength) samples when
the smartphone is located within a specific area. Table V (in
appendix) contains an example of the list of rules that the
application submits to ANARC. The rules specify that the
application has to be notified when the smartphone is in one
of the three circular areas of interest. ANARC then returns the
current position and ASU value.

In general, smartphone position can be obtained in two
ways: either using the GPS or using a network-based location
provider (which determines the position of the device using
visible access points and/or cellular towers). In both cases,
the OS returns the position expressed in terms of latitude,
longitude, and position accuracy. These three values identify
a circular area where the smartphone is supposed to be. As
known, GPS is in general the best localization method, with
an accuracy that is in the order of few meters. The network-
based method instead can have an accuracy in the order of
hundreds or thousands of meters. On the other hand, GPS is
much more energy demanding with respect to the network-
based provider. Thus, in order reduce the consumption of
energy, when monitoring the smartphone’s position, ANARC
implements an optimization based on a hybrid approach. By
default ANARC monitors the position using the network-

(a) Areas editor (b) Sample map

Fig. 2: An app for building signal coverage maps: selective
collection in undersampled regions

based provider. When the smartphone gets close to the area of
interest ANARC starts monitoring its location using the GPS.
In particular, the GPS is started when the following condition
is satisfied: |D − R| ≤ A, where D is the distance between
the center of the area of interest and the smartphone, R is the
radius of the area, and A is the accuracy.

Figure 2 shows some screenshots of the app dedicated to
signal coverage mapping. In particular, Figure 2a shows the
interface that allows the user to specify the areas of interest
(as circular areas). It is also possible to specify areas that
should be avoided during collection of samples. These user-
generated specifications are translated in rules similar to the
one in Table V and submitted to ANARC1. Figure 2b depicts a
signal coverage map where colored markers express the quality
of signal.

B. Detection of roaming borders

In cellular communications roaming refers to the possibility
for a customer to use (almost) all the services provided
by his/her mobile operator by using the network of another
operator. This usually happens when a customer travels in a
foreign country, but in some cases roaming can also take place
within the customer’s own country, e.g. when the operator
he/she is subscribed to does not provide full coverage.

A mobile operator could be interested in knowing the actual
borders of its network, i.e. the exact points where its customers
switch to another operator. A possible solution is represented
by an application that logs and georeferences all the transitions
to another operator. This information could be then collected
on a central server for further processing. The client-side of
such system can be implemented using ANARC. The rules

1In a complete system these rules would be received from the central server
where all user generated content is collected and aggregated. Having a global
view, the server would able to detect oversampled and undersampled regions.

that implement the requested behavior are shown in table VI:
whenever the smartphone enters in a roaming region, the app
is notified with current geographic coordinates and the hosting
operator.

The second rule returns the network operator name when
the user is in his/her home network. This rule is needed to
obtain the smartphone’s default operator.

C. Automatic monitoring of urban WiFi networks

We used ANARC to implement an app for automatic
monitoring of a urban WiFi network. The idea is to passively
monitor a set of WiFi access points, all under the same
administrative domain, as users wander within the urban area:
every time an access point is found the app runs a set of
network monitoring operations (e.g. measuring the delay or the
bandwidth towards a given target). Collecting these statistics
allows the network managers to detect overloaded access
points or other problems.

The app has been customized to operate with Pisa WiFi,
a municipality project that offers free Internet connection by
means of a number of access points scattered all over the town.
To use this service users need to log in. Account credentials
are sent using an SMS after registration.

The app has been implemented using the rules shown
in Table VII. The app is notified when i) a ”Wi-Fi Pisa”
access point becomes visible and ii) when the smartphone
is connected/disconnected to/from such access point. In the
first case, the app tries to connect to that Wi-Fi network
searching the credentials among received SMSs or requiring
user input. In the second case, the app starts an analysis task
on connection, and stops running tasks on disconnection. One
of the analysis tasks uses SmartProbe [19] for discovering the
bottleneck capacity between two hosts.

V. CONCLUSION

As networked systems become more complex and ubiq-
uitous, the adoption of programming paradigms based on
network-awareness gets more important. ANARC allows pro-
grammers to design and implement network-aware applica-
tions without significant effort. Provided programming abstrac-
tions are deliberately simple and based on reactive approach.
The presented applications show possible uses of ANARC
and demonstrate that the system is sufficiently general and
expressive to solve non trivial problems.

ACKNOWLEDGMENT

This work has been supported by the European Commission
within the framework of the CONGAS project FP7-ICT-2011-
8-317672.

REFERENCES

[1] W. Xue and H. K. Pung, “Context-aware middleware for supporting
mobile applications and services,” in Handbook of Mobile Systems
Applications and Services, A. Kumar and B. Xie, Eds. CRC Press,
2012.

[2] P. Makris, D. Skoutas, and C. Skianis, “A survey on context-aware
mobile and wireless networking: On networking and computing environ-
ments’ integration,” Communications Surveys Tutorials, IEEE, vol. 15,
no. 1, pp. 362–386, 2013.

[3] H. Chen, T. Finin, and A. Joshi, “An ontology for context-aware per-
vasive computing environments,” The Knowledge Engineering Review,
vol. 18, pp. 197–207, 9 2003.

[4] X. Wang, D. Q. Zhang, T. Gu, and H. Pung, “Ontology based context
modeling and reasoning using OWL,” in Proceedings of the Second
IEEE Annual Conference on Pervasive Computing and Communications
(PerCom) Workshops, March 2004, pp. 18–22.

[5] B. Y. Lim and A. K. Dey, “Design of an intelligible mobile context-
aware application,” in Proceedings of the 13th International Conference
on Human Computer Interaction with Mobile Devices and Services, ser.
MobileHCI ’11. New York, NY, USA: ACM, 2011, pp. 157–166.

[6] A. K. Dey and G. D. Abowd, “Towards a better understanding of
context and context-awareness,” in In HUC 99: Proceedings of the
1st international symposium on Handheld and Ubiquitous Computing.
Springer-Verlag, 1999, pp. 304–307.

[7] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A. Ran-
ganathan, and D. Riboni, “A survey of context modelling and reasoning
techniques,” Pervasive Mob. Comput., vol. 6, no. 2, pp. 161–180, Apr.
2010.

[8] M. Raento, A. Oulasvirta, R. Petit, and H. Toivonen, “ContextPhone: a
prototyping platform for context-aware mobile applications,” Pervasive
Computing, IEEE, vol. 4, no. 2, pp. 51–59, 2005.

[9] A. Beach, M. Gartrell, S. Akkala, J. Elston, J. Kelley, K. Nishimoto,
B. Ray, S. Razgulin, K. Sundaresan, B. Surendar, M. Terada, and
R. Han, “Whozthat? evolving an ecosystem for context-aware mobile
social networks,” Network, IEEE, vol. 22, no. 4, pp. 50–55, 2008.

[10] M.-R. Ra, B. Liu, T. F. La Porta, and R. Govindan, “Medusa: A pro-
gramming framework for crowd-sensing applications,” in Proceedings
of the 10th international conference on Mobile systems, applications,
and services. ACM, 2012, pp. 337–350.

[11] T. Das, P. Mohan, V. N. Padmanabhan, R. Ramjee, and A. Sharma,
“Prism: platform for remote sensing using smartphones,” in Proceedings
of the 8th international conference on Mobile systems, applications, and
services. ACM, 2010, pp. 63–76.

[12] V. Agarwal, N. Banerjee, D. Chakraborty, and S. Mittal, “USense – A
Smartphone Middleware for Community Sensing,” in Proceedings of
the 14th IEEE International Conference on Mobile Data Management
(MDM), vol. 1, June 2013, pp. 56–65.

[13] A. Faggiani, E. Gregori, L. Lenzini, V. Luconi, and A. Vecchio,
“Smartphone-based crowdsourcing for network monitoring: Opportuni-
ties, challenges, and a case study,” Communications Magazine, IEEE,
vol. 52, no. 1, pp. 106–113, January 2014.

[14] E. Gregori, L. Lenzini, V. Luconi, and A. Vecchio, “Sensing the internet
through crowdsourcing,” in Proceedings of the IEEE International
Conference on Pervasive Computing and Communications Workshops
(PerCom Workshops), March 2013, pp. 248–254.

[15] A. Faggiani, E. Gregori, L. Lenzini, S. Mainardi, and A. Vecchio,
“On the feasibility of measuring the internet through smartphone-based
crowdsourcing,” in Modeling and Optimization in Mobile, Ad Hoc and
Wireless Networks (WiOpt), 2012 10th International Symposium on, May
2012, pp. 318–323.

[16] “RootMetrics Coverage Map,” http://www.rootmetrics.com/.
[17] “Netradar,” http://www.netradar.org/.
[18] A. Faggiani, E. Gregori, L. Lenzini, V. Luconi, and A. Vecchio,

“Lessons learned from the design, implementation and management of
a smartphone-based crowdsourcing system,” in Proceedings of the First
ACM Workshop on Sensing and Big Data Mining, ser. SenseMine ’13.
New York, NY, USA: ACM, 2013.

[19] F. Disperati, D. Grassini, E. Gregori, A. Improta, L. Lenzini, D. Pel-
legrino, and N. Redini, “Smartprobe: A bottleneck capacity estimation
tool for smartphones,” in Proceedings of IEEE International Conference
on Green Computing and Communications and IEEE Internet of Things
and IEEE Cyber, Physical and Social Computing, Aug 2013, pp. 1980–
1985.

APPENDIX

TABLE V: Rule for signal coverage mapping

<ruleList>
<rule>
<when>
<condition>
CircularArea(center_lat1, center_lon1, radius1) ||
CircularArea(center_lat2, center_lon2, radius2) ||
CircularArea(center_lat3, center_lon3, radius3)

</condition>
<doIfTrue>
it.unipi.iet.action_entering_area

</doIfTrue>
<doIfFalse>
it.unipi.iet.action_exiting_area

</doIfFalse>
<onChange>
<property>
net.cellular.gsm.cellID

</property>
<do>
it.unipi.iet.action_cell_has_changed

</do>
</onChange>

</when>
<propertyList>
<property> geo.position.latitude </property>
<property> geo.position.longitude </property>
<property> geo.position.accuracy </property>
<property> net.cellular.ASU </property>
<property> net.cellular.networkOperatorName </property>

</propertyList>
</rule>

</ruleList>

TABLE VI: Rules for detecting roaming regions

<ruleList>
<rule>
<when>
<condition>
!net.operator.roamingStatus

</condition>
<do>
it.unipi.iet.action_my_operator

</do>
</when>
<propertyList>
<property>
net.cellular.networkOperatorName

</property>
</propertyList>

</rule>
<rule>
<when>
<condition>
net.operator.roamingStatus

</condition>
<onChange>
<property>
net.cellular.networkOperatorName

</property>
<do>
it.unipi.iet.action_operator_has_changed

</do>
</onChange>

</when>
<propertyList>
<property> geo.position.latitude </property>
<property> geo.position.longitude </property>
<property> geo.position.accuracy </property>

</propertyList>
</rule>

</ruleList>

TABLE VII: Rules for automatic monitoring of urban WiFi
networks

<ruleList>
<rule>
<when>
<condition>
substring(net.wifi.listSSID,’wifi pisa’)

</condition>
<doIfTrue>
it.unipi.iet.action_wifi_pisa_available

</doIfTrue>
<doIfFalse>

it.unipi.iet.action_wifi_pisa_unavailable
</doIfFalse>

</when>
</rule>
<rule>
<when>
<condition>
equals(net.wifi.currentSSID, ’wifi pisa’)

</condition>
<doIfTrue>
it.unipi.iet.action_wifi_pisa_connected

</doIfTrue>
<doIfFalse>
it.unipi.iet.action_wifi_pisa_disconnected

</doIfFalse>
</when>
<propertyList>
<property> net.ip.address </property>

</propertyList>
</rule>

</ruleList>

