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Abstract Social problems associated with falls of

elderly citizens are becoming increasingly important

because of the continuous growth of aging population.

Automatic fall detection systems represent a possible

answer to some of these problems, as they are useful

to obtain help in case of serious injuries and to

reduce the long-lie problem. Nevertheless, widespread

adoption of these systems is strongly influenced by

their usability and trustworthiness, which are at the

moment not excellent. In fact, the user is forced

to wear the device according to placement and

orientation restrictions that depend on the considered

fall-recognition technique. Also, the number of false

alarms generated is too high to be acceptable in

real world scenarios. This paper presents a technique,

based on walk recognition, that increases significantly

both usability and trustworthiness of a smartphone-

based fall detection system. In particular, the proposed

technique automatically and dynamically determines

the orientation of the device, thus relieving the user

from the burden of wearing the device with predefined

orientation. Orientation is then used to infer posture

and eliminate a large fraction of false alarms (∼ 98%).

Keywords Pervasive Healthcare · Activity

Recognition · Wearable Sensors · Walk Recognition

1 Introduction

Falls are a major problem for elderly people and fall-

related injuries are one of the most common causes

for hospital admission or death. The long-lie problem
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is frequently associated with falls: elderly people may

remain on the ground for a long period because they are

shocked, injured, or too weak to get to their feet (Wild

et al. 1981; Tinetti et al. 1993; Gurley et al. 1996).

The problem of long-lie can be reduced through the

use of a personal emergency response system, a small

device equipped with a “help” button that can be

carried or worn by the user. Unfortunately, in many

circumstances, one may not be able to press the button,

e.g. because of a loss of consciousness or as the result of

severe injuries. A solution to this problem is represented

by automatic fall detection systems: after a fall the

system, without human intervention, sends an alarm

message to the caregiver or to the patient’s relatives.

From the technical and research points of view, the

most challenging part of the process is recognizing a

fall, as it is an ill-defined process and it is difficult to

characterize.

Some fall detection systems are based on the idea of

instrumenting, with sensing devices, the environment

where the patients live. Solutions include tracking

of patients’ movements with a camera (Anderson

et al. 2006), infrared sensors placed in proximity

of beds (Sixsmith and Johnson 2004), floor mats

equipped with pressure sensors, or vibration and

acoustic sensors (Zigel et al. 2009). Nevertheless,

instrumenting the environment requires significant set

up costs and poses some privacy concerns. Other

techniques, on the contrary, are based on the idea of

sensing the patients’ movements through one or more

sensors (accelerometers and/or gyroscopes) attached

to the users’ body. The number of required devices

is a critical factor for obtaining a reasonable system

usability, thus in the following we focus only on those

solutions where monitoring is carried out by means of

a single sensing device. In particular, we concentrate
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on methods based on accelerometric information, since

it proved to be more useful with respect to angular

velocity for detecting falls (Lindemann et al. 2005).

Other critical factors that influence the usability and

the acceptability of fall detection systems are their

sensitivity and specificity: the former is the capacity

of a system in detecting all falls, whereas the latter is

its ability in detecting only real falls (filtering all fall-

like impacts caused by activities of daily living, such as

sitting on a chair).

In some previous work, information concerning the

orientation of the sensing device is used to infer user’s

posture and therefore to reduce the number of false

alarms (Karantonis et al. 2006; Kangas et al. 2008;

Bourke et al. 2010). The basic assumption behind the

techniques based on postural analysis is that the user

is lying after a fall: a possible fall is confirmed only

if the user’s body is horizontal after an impact. In

fact, posture recognition proved to be of paramount

importance for the reduction of false alarms in fall

detection systems. Unfortunately, the recognition of

lying posture using a single accelerometer poses two

requirements that significantly reduce system usability:

i) one of the reference axes of the device must be

aligned with the longitudinal axis of the user’s body

ii) the device must be integral with the user’s body.

Consider, for example, the use of a smartphone placed

into a pocket: the alignment between the device and

the longitudinal body axis can not be assured. Thus, in

order to correctly apply postural recognition, the user

would be forced to perform a calibration phase each

time he/she changes the orientation of the device (for

example, when extracting and reinserting the phone

from/into the pocket). In summary, calibration, to the

purpose of fall detection, consists in virtually aligning

one of the device’s axes with the longitudinal axis of the

user’s body (Avvenuti et al. 2013; Gietzelt et al. 2012).

In this paper we propose a technique that enables

the detection of lying posture without affecting system

usability. Users are allowed to wear the device without

paying attention to its orientation and without a man-

ual setup phase. This is achieved through dynamic and

automatic calibration: the direction of the longitudinal

axis of the user’s body, in the coordinate system of the

device, is automatically detected taking advantage of

walk recognition. A specific walk recognition algorithm

was designed and tested for this purpose. We then eval-

uated the benefits introduced by the use of posture de-

tection: experimental results show that such informa-

tion can reduce the number of generated false alarms

by ∼ 98%, increasing significantly the trustworthiness

of the fall detection process. A corollary contribution

of this work is a comparative evaluation of the filtering

effect of posture with respect to other information com-

monly used to distinguish real falls from false alarms.

Results show that posture detection provides the great-

est benefits, and highlight the importance of using such

information in future research on fall detection.

The remaining of this paper is organized as

follows. In Section 2 we describe the state of the

art regarding user’s posture in fall detection systems,

walk recognition, and smartphone-based fall detection.

Section 3 presents the principle of operation of our

approach: posture information can be obtained through

walk recognition and then incorporated in a fall

detection system. The experimental settings and the

data acquisition campaign are described in Section 4.

In Section 5 we present the algorithm for the detection

of walk segments. Then, in Section 6 we show how the

posture information obtained from the walk segments

increase the specificity of fall detection. Finally, we

present our conclusions in Section 7.

2 State of the art

Here we recall the most significant work on: i) the use

of posture information in fall detection systems; ii)

recognition of walk segments in similar contexts; iii)

smartphones as a platform for the detection of falls.

Then, the major contributions of our work with respect

to previous literature are highlighted.

2.1 Use of posture information in fall detection

systems

One of the first papers describing the use of an

unobtrusive and smart device for the classification

of human movements and the detection of falls

is Karantonis et al. (2006). The device, equipped with a

tri-axial accelerometer, is firmly attached at the user’s

waist and aligned with the longitudinal axis of the

human body. Thus, the system is able to determine the

posture of the user by measuring the angle between

the axis of the device aligned with the user’s body

and gravity. The tilt angle is then compared with fixed

thresholds to discriminate between standing, sitting,

and lying postures. A possible fall, detected by means of

a threshold on the acceleration magnitude, is upgraded

to a fall only if: no significant activity is recorded for at

least 60s; the user is in the lying posture.

A comparison between low-complexity fall detection

algorithms for wearable accelerometers is presented

in Kangas et al. (2008). The three algorithms under

evaluation are based on the following features: impact

+ posture; start of fall + impact + posture; and start of
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fall + velocity + impact + posture. Posture information

is calculated similarly to Karantonis et al. (2006).

Besides the performance of the three algorithms, it is

important to notice that posture information has been

considered as fundamental and its analysis has been

always included.

A similar study is described in Bourke et al. (2010),

where a number of fall detection algorithms have been

compared by measuring their performance against a

rather large dataset. The experimental results showed

that an algorithm that uses velocity, impact, and

posture information can obtain a low false alarm rate

(less than 1 per day) still having high sensitivity. Also

in this case, it is required to firmly attach the device to

the user’s body (using a standard belt and a modified

commercial mobile-phone carry case).

Two other works requiring a predefined orientation

of the device are Estudillo-Valderrama et al. (2009)

and Tolkiehn et al. (2011). In Estudillo-Valderrama

et al. (2009) a distributed fall detection architecture is

presented; the adopted algorithm is the one described

in Estudillo-Valderrama et al. (2008), and lying posture

is detected similarly to Karantonis et al. (2006).

In Tolkiehn et al. (2011), tilt variations are used

to detect falls and fall directions. In this system,

a barometric pressure sensor is combined with the

accelerometer to slightly improve detection accuracy.

In Gjoreski et al. (2011), further evidence about

the importance of posture as a method for increasing

accuracy of fall detection is provided: about 20%

accuracy improvement can be obtained. Nevertheless,

also in such work, detection of posture relies upon

predefined placement of accelerometers to the user’s
body. Moreover, an individual calibration phase is

required to compensate for the slightly different ways

people wear the device.

All of the above described systems confirm the

importance of posture information in fall detection

systems. Nevertheless, the user is forced to wear the

device according to a predefined orientation. The use

of posture detection when the device orientation is

unknown is addressed in Curone et al. (2010). This

system aimed at the context of worker’s surveillance

and relied on a fundamental assumption: the user is

upright while dressing the device. This assumption

cannot be applied in our reference scenario.

2.2 Walk recognition

Recognition of human activities by using the accelerom-

eter that is embedded in commonly available smart-

phones is described in Kwapisz et al. (2011). The au-

thors evaluated different classification systems (J48, lo-

gistic regression, and neural network) in recognizing six

different activities, including walking, on a set of 29

users carrying a smartphone in theirs pants front leg

pocket. As far as walking is concerned, all the three clas-

sifiers obtained accuracy values of approximately 90%.

Other work showed that it is possible to obtain

effective human activity recognition also when the

position of the device is not known a priori (Xu et al.

2012). In particular such work showed that, through

sparse signal representation, activities such as making

a step can be reasonably recognized and, at the same

time, the position of the device can be estimated (out

of 14 possible activities and 7 possible locations). In

this case, movement information (accelerometer and

gyroscope signals) is collected using wireless sensor

nodes (TelosB motes) and not commonly available

smartphones.

Recognition of walking activity and its use for

inferring some properties of the device has been

discussed also in Kunze et al. (2005), where the authors

describe a technique to automatically recognize the part

of the body where the sensing device is located (wrist,

head, trouser pocket, breast pocket). The technique

operates in two stages: first it detects the time segments

where the user is walking, then a classifier is used in

such regions to select the most probable location of the

device. The good classification results and the fact that

walking is the most common human activity advocate

the use of walking as a source of useful information for

inferring device properties.

2.3 Smartphone-based fall-detection systems

Detection of falls by using the patient’s mobile phone

is obviously an attractive idea, as it would not force

the user to carry an additional device. Moreover,

smartphones already include all the communication

functionality needed for sending alert messages to the

caregivers, and are nowadays provided with enough

computing power to support the use of non trivial signal

analysis methods (Sposaro and Tyson 2009; Yavuz et al.

2010).

In Abbate et al. (2012) a smartphone-based fall

detection system is presented. The system can acquire

kinetic information using both the smartphone internal

accelerometer or an external sensing unit. In both cases,

the sensing device is attached to the user’s belt. The

implemented technique is able to recognize some fall-

like activities, like sitting on a chair or lying on a

bed, so that they are not confused with real falls and

thus reducing the number of false alarms. The system

shows excellent performance in terms of accuracy and



4 G. Cola, A. Vecchio, M. Avvenuti

the user is not forced to wear the device according to

a predefined orientation, since the detection algorithm

uses only the magnitude of acceleration. Nevertheless,

the device cannot be placed in the pockets of the user’s

trousers, as it would be subject to spurious movements.

PerFallD is another smartphone-based fall detection

system (Dai et al. 2010). PerFallD can operate in two

modes: using only the smartphone’s accelerometer or

using also an additional element that must be carried by

the user attached on his thigh. This additional element

is made of magnetic material and causes peculiar

variations on the magnetic field that are detected by

the smartphone’s compass. However, while this element

may increase the performance of the system, its use is

also detrimental in terms of usability.

The problem of fall classification by machine

learning using mobile phones is studied in Albert et al.

(2012). The authors evaluate the performance, in terms

of sensitivity and specificity, of five machine learning

classifiers using data collected through a smartphone.

The device was attached to the users’ body through

a belt and it was placed in a standard position so

that the direction of the three axes was known. The

evaluation has been carried out using a rather large

set of acceleration features, avoiding a manual selection

of the most relevant ones and relying on the machine

learning classifiers.

All the previous systems are characterized by

sensitivity and specificity values that range from good

to excellent. Nevertheless, they all force the user to

attach the device to the user’s body in a rather

unnatural way: it cannot be carried in one of the user’s

pockets, they all require to fix the device on his/her

belt. Moreover, either the orientation of the device

is fixed and known (placing an additional burden on

the user) or the techniques cannot use the distinct

acceleration values available on the three axes. It is clear

that the performance of fall detection systems could

only get better if the techniques proposed so far would

make use of disaggregated acceleration information.

2.4 Contribution

With respect to the state-of-the-art techniques and

systems, the major contributions of this work are

summarized as follows.

– For the first time, the reduction of false alarms

associated to the use of posture information in

fall detection is evaluated and compared to other

commonly used filtering criteria, such as vertical

velocity or post impact activity. All these criteria

can be considered as the “building blocks” of

Fig. 1 Lying posture detection with aligned device. In this
example, VD is aligned with the y axis of the device. The
tilt angle between y and gravity is measured and compared
against a threshold (e.g. 50◦) in order to detect postural
transitions from standing to lying

Fig. 2 Lying posture detection with misaligned device. The
direction of gravity while the user is known to be upright is
used to estimate the direction of VD. The tilt angle between
VD and gravity is then monitored and used to detect postural
transitions

more complex fall detection techniques, thus the

evaluation of their effect in increasing the specificity

of fall detection is important for the design of future

systems.
– The use of walk segments for passively collecting

information about device orientation and user’s

posture in the context of fall detection is here

presented and, as far as we know, it is completely

novel with respect to previous work. The reduction

of false alarms obtained in the real world ( 97 hours

of monitoring) is approximately 98%.

– The adoption of these techniques in a smartphone-

based fall detection system provides significant

benefits for the user in terms of usability: i) the user

is no longer forced to wear the device according to

a fixed orientation; ii) the calibration phase is no

longer needed.

3 Method

The acceleration measured by accelerometers always

includes a component due to gravity, which can be

extracted through low-pass filtering of raw acceleration
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samples (Mizell 2003). The component due to gravity

can be used to find the direction of gravity with respect

to the current orientation of the device.

Let us call vertical direction (VD) the direction of

the longitudinal axis of the human body. If one of the

axes of the device is aligned with VD, posture can be

detected as shown in Figure 1. In this example, the tilt

angle between the y axis and gravity is used for posture

detection.

A more realistic scenario is shown in Figure 2. The

device is not aligned with the user’s body and VD is

unknown with respect to the coordinate system of the

device. The estimation of VD is generally achieved with

a calibration step, during which the user is required to

stay upright for a few seconds. Indeed, gravity and VD

are almost aligned when the user is upright and the

direction of gravity can be used to estimate VD.

In order to automatically find VD and detect

the posture without requiring a calibration step, we

propose a technique based on the idea of measuring

the direction of gravity while the user is walking. The

reason for taking advantage of walk is threefold: while

walking, the user is known to be upright; walk is a

frequently occurring activity; walk can be recognized

with high specificity by computer programs. Obtaining

VD by means of walk recognition not only removes

the necessity of wearing the device according to a

predefined orientation, but also allows the user to freely

reposition the device while in use (VD is automatically

updated as soon as the user walks).

The posture detection method we propose can be

used in a fall detection system as follows: i) whenever

the user is walking, VD is estimated; ii) VD is used

after an impact to understand whether the user is

standing or not; iii) if after an impact the user is

standing, then the event is discarded as a false alarm.

A flowchart representation of the proposed method is

shown in Figure 3. More detailed descriptions of the

walk recognition and fall detection algorithm are given

in Section 5 and 6, respectively. Such an approach to

posture detection greatly increases the usability of the

system, as it removes the need of placing and keeping

the device according to a predefined alignment. Even

with a binary meaning (i.e., upright/lying), posture

can be used to classify a large number of impacts as

non-falls, thus improving the trustworthiness of the

fall detection system by reducing the number of false

alarms.

4 Experimental setup and data acquisition

We carried out a data acquisition campaign to evaluate

the performance of both the walk recognition algorithm

Fig. 3 Flowchart representation of the proposed method:
walk recognition is executed in parallel with impact detection,
in order to keep the estimation of VD updated. Whenever an
impact is detected, the latest VD estimation is used to infer
the user’s posture and confirm a possible fall

Table 1 Volunteers’ characteristics

User ID Gender Age Height[cm] Weight[kg]
1 F 26 160 55
2 F 26 166 50
3 F 34 170 60
4 F 57 166 66
5 F 61 166 77
6 M 22 168 58
7 M 26 192 80
8 M 28 175 62
9 M 40 177 81
10 M 68 175 95

and the fall detection system that we designed and

implemented.

Movement traces have been acquired using a

Shimmer 2 device (Realtime Technologies Inc. 2010),

which is equipped with a tri-axial accelerometer.

The Shimmer device has been encapsulated in a

smartphone-like container to mimic the form factor of

commonly available smartphones and thus to obtain

acceleration traces that are consistent with those

obtained in real-world settings. Besides the size, also

the weight of the smartphone-like container has been

calibrated to correspond to the weight of an ordinary

smartphone (130 g, approximately the weight of an

iPhone 4). We did not directly use a real smartphone for

three main reasons: first, on smartphones, the scale of
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accelerometers is often limited in the ±2g range1, and

thus too small to capture the large variations that occur

during falls; second, this enabled a fine-grained control

of the sampling activities without the restrictions

imposed by mobile operating systems; third, since the

same device has been used to collect acceleration data

also during some falls, the use of a real smartphone has

been discouraged by its fragility.

Acceleration has been sampled at 51.2Hz and stored

using the persistent memory of the device. Then, traces

have been transferred onto a PC for off-line analysis

and to ensure repeatable evaluation of the proposed

techniques. During data acquisition, the device has

always been worn in a front trouser pocket. Although

this is not the only position where a smartphone can

be placed, other possibilities include bags and jackets,

trouser pockets are the most common placement. We

preferred to defer the analysis of different locations until

a later time. Moreover, it is important to notice that

several walk-based techniques proved to be robust also

when the device is placed in the user’s jacket (Kunze

et al. 2005). As far as orientation is concerned the device

has been worn with no specific attention, as it is usually

done with smartphones.

Ten volunteers have been involved in a collection

campaign. Gender, age and physical characteristics of

the volunteers are shown in Table 1. The campaign

included both short walk sessions, aimed at evaluating

the walk recognition and orientation procedures, and

long monitoring sessions, to assess the final goal of the

system, i.e. its ability to remove possible false alarms,

in terms of falls, occurring during the normal activities

of daily living.

5 Real time walk recognition and estimation of

device orientation

The algorithm for the recognition of walk segments

has the following specific requirements: i) low compu-

tational load; ii) high specificity; iii) reasonable level

of sensitivity.

Having a low computational load is fundamental

for an application that is going to be executed on a

smartphone. To reduce the computational load, our

walk recognition algorithm does not operate in the

frequency domain, but it is based only on temporal

analysis of the samples of the acceleration magnitude

(Euclidean norm). High specificity in detecting walk

segments is strictly connected, in our system, with fall

1 In general, the range supported by the HW is wider and
this limit is imposed by OSes. Thus, we may expect to have
smartphones with a fall-detection capable range in the next
future, as the API and the OSes evolve.

Fig. 4 Example of acceleration pattern during a short walk:
the groups of peaks produced by each step have been
highlighted and numbered

Fig. 5 Walk detection as a finite state machine

detection accuracy. A misdetected walk segment would

lead to a wrongly estimated VD and, thus, to errors in

lying posture detection. The effect of these errors on fall

detection accuracy may be detrimental, since posture

is used for both identifying false alarms and confirming

real falls. Finally, a reasonable level of sensitivity in

detecting walk segments is required in order to quickly

update VD when the user changes the orientation of

the device.

5.1 Description of the walk recognition algorithm

During a walk each leg goes through two fundamental

states: the stance phase, when the foot is in contact with

the ground; and the swing phase, when the leg swings

forward and all the body weight is placed on the other

leg (Lai et al. 2009).
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The cyclic repetition of these states produces a

typical acceleration magnitude pattern, as the one

shown in Figure 4. It can be observed the presence

of a group of peaks for each step made. These groups

are generated at the end of every swing state, when

the foot hits the ground. Conversely, relatively lower

accelerations are produced while a leg is swinging.

Another interesting consideration concerns the

different characteristics of the odd and even groups of

peaks, clearly visible in Figure 4. This difference is due

to the fact that the device is carried in a trouser pocket,

thus the peaks produced by the leg corresponding to the

side of the body where the sensor is placed are generally

higher (even numbers in Figure 4).

The algorithm for the recognition of walk segments

can be represented as a finite state machine (shown

in Figure 5). When the machine is started, no groups

of peaks have been found yet and the current possible

walk segment is empty. The machine is in the Group

start search state, where it analyzes the acceleration

magnitude of samples waiting for a new group of

peaks. We define an acceleration magnitude peak as a

sample greater than the previous and the next samples.

A new group starts when a peak greater than the

peak_intensity threshold is detected. After that, the

group start has been found and the machine moves to

the Group end search state.

In this state, possible new peaks are searched and

added to the current group of peaks. This process

ends as soon as one of the following conditions occurs:

i) no new peaks are found for a time longer than

the group_int_max interval; ii) a time longer than

group_dur_max has passed since the start of the group.
When the group ends, the following information is saved

and added to the current walk segment: group_start,

corresponding to the time the first peak in the group

occurred; group_end, corresponding to the time the last

peak in the group occurred; group_time, calculated as

the middle time between the start and the end times

of the group. At this point, the machine moves to the

Step length test state.

In our algorithm, the duration of each step is

estimated using the difference between the group_time

values of consecutive groups of peaks. In the Step length

test state, the machine tests whether the duration of

the last step lies between two thresholds: step_dur_min

and step_dur_max. If the last step meets the duration

requirements, the machine moves to the Segment

duration test. Otherwise, the current walk segment is

reset and the machine returns to the Group start search

state.

In Segment duration test, the duration of the current

walk segment is checked. This duration is calculated as

the difference between the end time of the last group

of peaks and the start time of the first group in the

segment. If the duration of the segment is shorter than a

seg_dur_min interval, then the machine returns to the

Group start search state. Conversely, if the segment is

long enough, the machine moves to the Step regularity

test state.

In Step regularity test, two standard deviation values

are calculated: OSD (Odd Step Durations) and ESD

(Even Step Durations). Such values are calculated using

the durations of the odd and the even steps respectively.

The test is passed only if both OSD and ESD are smaller

than a step_dev_max threshold. If the test is not

passed, the first group of peaks belonging to the current

possible walk segment is discarded and the machine

moves back to the Group start search. Instead, if the

regularity test is passed, the current possible walk

segment is actually identified as a walk segment. Thus,

it can be used to estimate VD in the coordinate system

of the device. In our implementation, this estimation is

done averaging the values of the acceleration samples

belonging to the walk segment, considering the x, y,

and z components separately. After this estimation has

been calculated, all other information about the walk

segment is discarded and the machine returns to the

Group start search state.

5.2 Selection of thresholds

The minimum duration of a walk segment seg_dur_min

has been chosen on the base of the following consider-

ations. If the minimum duration of a segment is too

short, then the estimation of VD may be highly inac-

curate for at least two reasons: first, because the es-

timation is made on a relatively small set of samples;

second, because it is more difficult to ensure the speci-

ficity of walk recognition by testing the regularity of a

small number of consecutive steps. On the other hand,

we expect short walks to be very frequent. This is true

especially indoors where, due to the limited space, long

sequences of steps are rare. According to our experi-

mental data, a minimum duration of 6s represents a

satisfactory trade-off between walk recognition sensi-

tivity and the accuracy in estimating VD.

All the other thresholds have been tuned according

to the following procedure. First, the peak_intensity,

group_dur_max, and group_int_max thresholds have

been found by means of exhaustive search: all the

possible triplets in a reasonable search space have

been used to evaluate walk recognition results on the

training set (maximizing the number of detected walk

segments). The triplet that provided the best results

has been used to determine the remaining thresholds.
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Table 2 First detection times

User Average [s] Worst [s]
1 6.42 6.52
2 6.44 6.95
3 6.28 6.46
4 6.24 6.39
5 6.55 7.21
6 6.41 6.62
7 6.46 6.56
8 6.33 6.41
9 6.43 7.17
10 6.31 6.56

Global 6.39 7.21

Fig. 6 Device placement examples during long monitoring
experiments. While the user is standing, the movements of
the device inside a pocket are expected to affect only the
x and y components of VD in the coordinate system of the
device

In particular, the tuning algorithm selects the longest

step_dur_min, the shortest step_dur_max, and the

lowest step_dev_max which do not lead to a reduction

in the total number of walk segments detected.

5.3 Walk recognition results and discussion

A first evaluation has been carried out using our dataset

of short walk tracks. To reduce the dependency of

results from the training set, we used the leave-one-

out cross-validation technique: let N be the number of

users, the walk recognition algorithm has been tuned

using the tracks of N − 1 users and evaluated on the

tracks of the remaining user; the procedure has been

repeated N times.

A performance index that is particularly interesting

in our case of study is represented by the first detection

time, defined as the end time of the first walk segment

found in a walk track. This index is relevant because it

corresponds to the delay introduced by the system to

compute the first VD estimation since the user started

walking. Table 2 shows the first detection time obtained

in the worst and average case for every user in our

dataset. In the global worst case, the walk recognition

algorithm was able to find a walk segment after 7.21s.

This confirms the effectiveness of the walk recognition

method (note that each segment has a duration of 6s,

thus the initial transient phase that is not included in

the walk segment is slightly above 1s).

A second evaluation has been carried out using the

long monitoring tracks. The walk recognition algorithm

has been evaluated on each user’s track, using the

parameters obtained from the walk tracks of the other

users. Table 3 shows the results. For each user, the

duration of the long monitoring track, the number of

walk segments found, the average and the maximum

interval between consecutive walk segments are shown.

The last row of the table shows the global results.

To the purpose of fall detection, the average interval

between consecutive walk segments is particularly

significant, as it determines the time needed for

obtaining a new VD estimation. This interval is

influenced by two main factors: first, by how frequently

the user actually walks; second, by how much the

algorithm is able to detect walking when it happens.

The first factor is not under our control, while

the second depends on the sensitivity of the walk

recognition algorithm. Analyzing the long monitoring

tracks more in detail, we were able to find out that the

longest intervals without walk segments were registered

when users had been sitting for a long time (e.g. driving,

working at the office, watching TV). Conversely, when

users were performing less sedentary activities (e.g.

visiting shops), the walk recognition algorithm proved

to be able to find a new segment with adequate

frequency (within few minutes).

The long monitoring tracks were labeled with the

actions performed by users. However, to reduce the bur-

den, users were asked to annotate the activities/locations

at a rough level, e.g. at home, at the office, shopping,

driving, specifying the start and end time with minute

precision. This approximate annotation made it impos-

sible to calculate the specificity of the walk recognition

algorithm, as this would have required second-level pre-

cision (each segment is 6s long) and a detailed specifi-

cation of activities (e.g. by recording a video).

Nevertheless, some assumptions can be made if we

consider the placement of the sensor during the long

monitoring experiments. As illustrated in Figure 6,

the device was placed in a front trouser pocket,

with the z axis of the device almost orthogonal to

VD. Hence, we expect the VD component along the

z axis to remain almost constant and close to 0g

across different estimations. Also, we expect only minor

variations regarding the x and the y components of

consecutive VD estimations, if correctly produced by
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Table 3 Walk recognition results on long monitoring tracks

User Duration [h] Walk segments Avg Interval [min] Max Interval [min]
1 8.20 372 1.31 134.11
2 11.87 474 1.50 132.64
3 9.41 117 4.75 99.38
4 9.24 211 2.59 34.84
5 8.79 77 6.68 192.99
6 10.62 443 1.43 102.89
7 9.08 50 10.69 140.04
8 12.25 425 1.73 43.85
9 9.16 138 3.90 97.78
10 8.58 396 1.29 78.07

Global 97.21 2703 2.14 192.99
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Fig. 7 (a) VD estimations against time; (b) absolute deviation over standard deviation ratio on the z axis
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Fig. 8 (c) VD estimations against time with a wrong estimation performed while driving; (d) absolute deviation over standard
deviation ratio on the z axis

the walk recognition algorithm. Significant differences

are possible only if the device is extracted from the

pocket and repositioned in a different way. In the latter

case, we expect an abrupt change along the x and

the y, followed by estimations that confirm the new

orientation of the device with respect to the user’s body.

In any case, the z component of the estimated VD

should remain close to 0g during our experiments.

To verify this hypothesis, we plotted the VD

estimations obtained for each user against the time

when they were found. Figure 7a shows one of these

plots where the acceleration on the z axis is almost

constant and very close to 0g, while the acceleration

along the x and y axes is characterized by some

fluctuations. Figure 7b highlights the dispersion on the

z axis: for each value it is shown the ratio between the

absolute deviation from the average and the standard

deviation. The maximum absolute deviation from the

average is 3.1 times the standard deviation in the

example.

Figures 8a and 8b, instead, have been produced by

artificially adding the recognition of a walk segment

during an activity that does not correspond to walking

(driving, in this particular case). Such a wrong



10 G. Cola, A. Vecchio, M. Avvenuti

estimation can be immediately identified simply from

the observation of the plots. In particular, in Figure 8b

it can be noticed that the absolute deviation over

standard deviation ratio on the z axis presents an

abnormal value corresponding to the fake walk segment.

The fake walk segment produces a value on the z axis

with an absolute deviation from the average equal to

7.6 times the standard deviation.

We inspected all the traces and verified that the pat-

tern corresponds to the expected one. This information

cannot be used to state that all walk segments were

collected when the user was actually walking. However,

we can state with reasonable confidence that no seg-

ment was collected while the user was in a non-upright

position, such as lying or sitting.

6 Use of posture in a fall detection system

In general, accelerometer-based fall detection systems

detect impacts by means of a fixed threshold on

the acceleration magnitude (Karantonis et al. 2006;

Kangas et al. 2008; Bourke et al. 2010; Abbate et al.

2011, 2012). Unfortunately, these impacts include real

falls as well as fall-like impacts due to activities

of daily living (ADLs), such as sitting or walking,

that lead to false alarms. Approaches for reducing

false alarms try to discriminate between ADLs and

real falls using vertical velocity estimation (Degen

et al. 2003; Bourke and Lyons 2008), post-fall activity

detection (Karantonis et al. 2006; Abbate et al. 2012),

and posture information (Karantonis et al. 2006;

Kangas et al. 2008; Bourke et al. 2010).

The major drawback of existing approaches based

on posture is the need for a fixed alignment of

the device with respect to user’s body, or for a

manual calibration. Additionally, in case of manual

calibration, the procedure must be repeated each

time the orientation of the device changes. The walk

recognition technique described in Section 5 can be

used to address this limitation, since it allows the

fall detection system to automatically and dynamically

estimate VD each time the user walks.

In the following, we describe a fall detection system

that uses our technique for the automatic estimation

of device orientation to infer posture information.

The performance of the fall detection system is then

evaluated on the long monitoring tracks of our dataset,

to measure both the overall results achieved by the

system and the relative contribution to filter false

alarms provided by posture information with respect

to other filtering techniques.

Fig. 9 Fall detection as a finite state machine

6.1 Fall detection algorithm

The fall detection algorithm can be described through

the finite state machine shown in Figure 9. The

initial activity of the fall detection algorithm (Peak

search state) is finding a fall-like impact, called impact

thereafter, and defined as follows. An impact is found

when the magnitude of the acceleration signal exceeds a

predefined impact_peak threshold. Values ranging from

2.5g to 3.5g have been used in the literature for this

threshold (Bourke et al. 2007; Li et al. 2009). In our

implementation, we set impact_peak to 3g: the 3g value

is small enough to avoid false negatives, as real falls are

likely to produce a peak that exceeds such threshold,

but not too small to generate numerous false alarms.

After an impact has been detected, the machine

moves to the Post-peak wait state and starts a

bouncing_timer. This timer is used to wait for the end

of the impact phase. During the interval specified by

the timer, the acceleration samples are still analyzed: if

another magnitude sample above 3g is detected, the

timer is restarted. When the timer finally fires, the

machine moves to the False alarm tests state.

In False alarm tests, the algorithm performs a set of

tests in order to confirm that the impact is a real fall.

The set of tests that we have implemented includes:

post-impact activity test, vertical velocity estimation

test, AAMV index test, activity ratio test, and lying

detection test. Only if all of these tests are passed the

impact is definitely classified as a real fall.

The Post-impact Activity Test (PAT) is based on

the assumption that, immediately after a fall, the user

generally lies on the ground and produces little or no

variations in the acceleration signal. The PAT has been

implemented as described in Abbate et al. (2012). In

particular, only an interval of 2.5s after the impact was

considered, in order to allow fast detection of falls. If

enough movement is detected, the impact is discarded

as a false alarm.

The Vertical Velocity estimation Test (VVT) has

been used to reduce the incidence of false alarms (Degen

et al. 2003; Bourke and Lyons 2008). The estimation is

based on the numerical integration of the acceleration

magnitude after gravity has been subtracted. In order

to increase the estimation accuracy, the acceleration

signal related to the impact is low-pass filtered with
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Table 5 Fall detection algorithm: impacts above 3g

User Impacts Impacts/h
1 16 1.95
2 55 4.63
3 14 1.49
4 54 5.84
5 100 11.38
6 287 27.02
7 23 2.53
8 99 8.08
9 72 7.86
10 763 88.93

Global 1483 15.26

15Hz cut-off frequency, as described in Bourke and

Lyons (2008). The vertical velocity threshold has been

selected analyzing the database of falls presented

in Abbate et al. (2012): setting this value to 0.7m/s

seems to be a reasonable choice to minimize the risk

of false negatives. If no velocity estimations above the

threshold are found, the impact is discarded as a false

alarm.

The use of the Average absolute Acceleration Mag-

nitude Variation (AAMV) index has been discussed in

Abbate et al. (2011, 2012). According to the experimen-

tal results, falls are expected to produce faster varia-

tions in the acceleration magnitude with respect to sit-

ting or lying. We implemented the AAMV index test

(AAMVT) as described in Abbate et al. (2012), using

a threshold equal to 0.26g. If the value of the index is

below the threshold, the fall-like impact is ignored.

The Activity Ratio Test (ART) is based on the

Activity Ratio Index (ARI) described in Abbate et al.

(2012). ARI measures the level of activity in an interval

of 700ms properly centered at the fall-like impact. It is

calculated as the ratio between the number of samples

not in [0.85g, 1.3g] and the total number of samples in

the 700ms interval. Fall-like impacts are discarded as

false alarms if the ratio is below 0.45.

Finally, posture information is considered through

the Lying Detection Test (LDT), which has been

implemented by measuring the angle between the

automatically estimated VD and gravity. If this tilt

difference is below 50◦ the impact is discarded. We

decided to set a 50◦ threshold to be conservative

and reduce the risk of filtering out real falls. At the

beginning of the track it may happen that a VD

estimation has not been found yet: in this case, LDT is

not executed.

6.2 Fall detection results and discussion

The fall detection algorithm was tested on the long

monitoring tracks of our dataset. As no real falls

Table 6 Fall detection specificity results (%)

User PAT VVT AAMVT ART LDT All
1 81.3 43.8 37.5 43.8 100 100
2 94.5 3.6 50.9 16.4 100 100
3 85.7 7.1 78.6 35.7 92.9 100
4 25.9 14.8 64.8 35.2 100 100
5 74.0 18.0 72.0 77.0 99.0 100
6 98.6 1.0 57.8 30.0 99.0 100
7 30.4 56.5 69.6 82.6 91.3 100
8 94.9 3.0 29.3 14.1 98.0 100
9 98.6 2.8 90.3 68.1 97.2 100
10 78.8 16.5 78.9 62.9 98.3 100

Global 82.3 12.3 69.5 51.6 98.4 100

Table 7 Walk segments statistics

User WS/h AHP[g]
1 45.4 2.0
2 39.9 2.5
3 12.4 2.3
4 22.8 2.1
5 8.8 2.8
6 41.7 3.0
7 5.5 2.6
8 34.7 2.4
9 15.1 2.8
10 46.2 3.6

Global 27.8 2.6

occurred during the recording of these tracks, this test

can be only used to measure the specificity of the fall

detection algorithm. For the sensitivity, we tuned the

filtering thresholds and parameters in order to ensure

that all the simulated falls of the dataset presented

in Abbate et al. (2012) were properly detected (100%

sensitivity).

As mentioned in Section 5.3, users were asked to an-

notate their current activity or location occurring dur-

ing the long monitoring tracks. These were categorized

at a rough level using the following labels: home, office,

transport, city, and outdoor. Home includes activities

such as resting, watching TV and housekeeping; office

mainly includes short walks and long periods sitting at

the desk; city refers to visiting shops or bars and walk-

ing outdoors; transport is used for the periods spent

in a car or public transportation; finally, outdoor (per-

formed only by user 10) includes activities mainly per-

formed in the countryside, such as walking, jumping,

kneeling, and bending. The percentages of different ac-

tivities performed by each user are shown in Table 4.

The first step of the fall detection algorithm consists

in the detection of impacts, and it is based on the

3g acceleration magnitude threshold. The results of

impact detection applied to the long monitoring tracks

are shown in Table 5, in terms of total number of

impacts and impact rate (impacts per hour). These
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Table 4 Long monitoring tracks, duration of activities

User Duration [h] Home % Office % Transport % City % Outdoor %
1 8.2 0.0 76.6 4.1 19.3 0.0
2 11.9 0.0 82.9 0.0 17.1 0.0
3 9.4 7.1 68.7 11.4 12.8 0.0
4 9.3 94.7 0.0 2.2 3.2 0.0
5 8.8 100 0.0 0.0 0.0 0.0
6 10.6 82.4 0.0 0.0 17.6 0.0
7 9.1 4.4 82.2 8.3 5.1 0.0
8 12.3 54.3 36.7 9.0 0.0 0.0
9 9.2 5.9 82.5 8.8 2.8 0.0
10 8.6 18.9 0.0 43.6 9.5 28.1

Global 97.2 28.2 52.3 8.2 8.8 2.5

figures highlight the need for techniques able to reduce

the incidence of false alarms. Also, it can be observed a

great variation in the impact rate of different users. This

variation can not be solely explained by the peculiar

activities a user performed. For example, user 9 showed

an impact rate about 5 times greater than user 2,

despite having performed similar activities. It is also

worth noting that no impacts were produced while the

users were traveling in a car.

The second step of the fall detection algorithm

consists in filtering out false alarms by means of the five

tests described in Section 6.1. Table 6 shows the results

obtained by the different tests in terms of specificity

(%), where the specificity reached by each filter is

calculated as the ratio between the number of impacts

recognized as false alarms and the total number of

impacts. These results highlight the importance of the

use of posture for the filtering of false alarms: in fact,

the LDT was able to filter an average 98.4% of the

impacts, bringing a leading advantage over all the other

techniques. Post-impact activity detection techniques,

i.e. PAT, AAMVT and ART, also bring a significant

improvement (82.3%, 69.5% and 51.6%, respectively),

while vertical velocity, i.e. VVT, seems to be the least

relevant test (12.3%).

The high specificity achieved when filtering on the

base of posture information suggests that most of the

false alarms were produced while users were upright

or walking. In order to evaluate if a relationship holds

between walking and the impact rate of each user,

we calculated the statistics shown in Table 7. For

each user, the number of Walk Segments per hour

(WS/h) and the Average Highest Peak (AHP) index

are reported. The former can be used as a measure of

the user’s activity level, while the latter indicates the

user’s tendency to produce high acceleration peaks, and

thus impacts, while walking. AHP has been calculated

by averaging the highest acceleration magnitude peaks

of walk segments. The combination of these two indexes

together with the activities performed seems to offer a

reasonable explanation of the impact rate experienced

by each user. For example, the relatively low AHP value

of user 1 determined a low number of impacts, while the

relative high walking rate and high AHP value of user

10 determined the highest impact rate of the dataset.

Finally, it is worth highlighting that the use

of posture on these long monitoring tracks was

made possible by our technique based on automatic

estimation of VD. The traditional approaches would

have been inadequate, since they require manual

calibration and/or predefined orientation of the device.

7 Conclusions

We presented a novel technique for increasing both

usability and trustworthiness of fall detection systems.

By finding segments of acceleration corresponding to

walk periods, the orientation of the sensing device

with respect to the user’s body (and vice-versa)

can be automatically determined. The advantage is
twofold: manual calibration and alignment constraints

are no longer necessary (as, instead, are with fall

detection systems presented so far); and the sensing

device can be worn in the user’s trouser pockets.

Such passively collected information is then used to

understand whether, after an impact, the user’s body

is horizontal or not, thus reducing significantly the

number of false alarms. Both the walk recognition

algorithm, specifically designed for being included in

a fall detection system, and the filtering effect due

to posture information have been evaluated using a

set of long monitoring tracks. Experimental results

confirmed that the proposed method is able to improve

the accuracy of a fall detection system, in terms of

specificity.

Future work will focus on understanding how the

different ways of carrying a smartphone (in a bag, in a

jacket pocket) impact the proposed technique, as well as

on the analysis of the energy consumption introduced

by the proposed walk recognition algorithm.
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