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ABSTRACT
Every individual has a distinctive way of walking. For this
reason gait can be a key element of biometric techniques
aimed at authenticating and/or identifying the user of a
wearable device. This paper presents a lightweight method
that uses the acceleration collected at the user’s wrist for
authentication purposes. The user’s typical gait pattern
is learned during the first period of use, then detection of
anomalies in a set of acceleration-based features is used to
understand if a new user, a possible impostor or a thief, is
wearing the device. The method has been successfully eval-
uated with 15 volunteers, showing an Equal Error Rate of
2.9%. These results suggest that gait-based authentication
with a wrist-worn device can be carried out with high accu-
racy levels. A comparison with a similar method executed
on a pocket-worn device is also included.

CCS Concepts
•Security and privacy → Biometrics; Usability in secu-
rity and privacy; •Human-centered computing → Mo-
bile devices; Gestural input; •Computer systems orga-
nization → Sensors and actuators;

Keywords
Accelerometer; Anomaly detection; Biometrics; Gait anal-
ysis; Gait-based authentication; Gait-based identification;
Smartwatch; Walking detection; Wearable sensor; Wrist-
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1. INTRODUCTION
Smartphones are nowadays a key element of our lives, as
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they are used to perform a large number of common activi-
ties, such as paying in shops, tracking the user during sport
sessions, or suggesting navigation directions. Smartphones
are increasingly used in combination with other wearable
devices, in particular smartwatches. The latter ones can be
worn continuously throughout the day and, besides being a
convenient tool for interacting with smartphones in simple
operations, they also provide the opportunity to gather in-
formation about their users with unprecedented levels. In
particular, since smartwatches are directly worn over the
skin and thanks to additional sensors with respect to smart-
phones (e.g., heart rate sensor), they are particularly suit-
able for fitness monitoring and medical applications.

These capabilities are inevitably paired with significant
concerns from the point of view of privacy and security. In
fact, information collected through these devices is strictly
personal and it can be used to infer user’s habits and lifestyle.
Unfortunately, access to these devices is generally granted
using simple authentication methods like passwords and PINs.
In addition, these mechanisms are frequently disabled by
users: interaction with smartphones is characterized by a
large number of short sessions, thus introducing a PIN at
the beginning of each session is cumbersome.

The effort required from the user in authenticating him-
self/herself can be drastically reduced using biometric tech-
niques. Many biometric methods are based on the fact that
every user has a very specific way of performing some activ-
ities. Thus, the acceleration produced when these activities
are carried out can be compared against a template acquired
during the setup phase. The activity usually considered for
authentication purposes is walking, as it is frequently exe-
cuted. Also, gait is very user-specific [4], and this is clearly
important in a recognition method based on biometrics.

Besides smartphones and smartwatches, biometric recog-
nition methods are relevant for the whole class of wearable
devices, in particular those used for personal healthcare [22].
In telemedicine applications, patients are remotely moni-
tored by means of wearable systems. It has been observed
that in some situations, patients are tempted to give their
own device to someone else, e.g. to reach the prescribed
amount of activity [15]. In this context, gait-based authenti-
cation can be useful to recognize possible misbehaving users.

Biometric methods based on gait can be divided in two



categories, those used for authentication and those used for
identification [16]. In authentication, the system is aimed at
understanding if the user who is currently wearing the device
is the usual one (the owner of the device) or a new user. The
latter is not known in advance. This means that the system
knows the typical gait pattern of the owner, but it has no
knowledge about possible other users. Authentication can
be useful, for instance, to lock the device if the current user
does not behave like the owner. In identification, the system
is aimed at understanding who is the current user within a
set of possible users. The set of possible users is known in
advance, i.e. a template of gait is available for every user.
Identification is useful whenever a single device is shared
by a group of people, as operations can be automatically
customized to match the user’s needs and preferences.

This paper presents a gait-based authentication method
that relies on accelerometric information collected at the
user’s wrist, e.g. by using a smartwatch. Performing detec-
tion and analysis of gait with an accelerometer placed near
the wrist is much more challenging than using a sensor close
to the user’s center of mass, because hands are subject to a
significantly larger amount of accelerations throughout the
day. The proposed method is able to distinguish the gen-
uine user (i.e. the owner) from unauthorized users. The
typical gait pattern of the genuine user is learned during
an initial period of use; subsequently, anomalies in gait are
automatically detected and used to infer if the current user
is an impostor. An experimental evaluation of the method
has been carried out with the help of 15 volunteers. Results
show that the method is able to achieve an Equal Error Rate
(EER) as low as 2.9%.

2. RELATED WORK
Some pioneering work about gait-based authentication us-

ing accelerometric information has been presented in [2].
The method relies on cross-correlation for comparing gait in-
stances collected at runtime against a template of the user’s
typical step. The technique, in an experimental evaluation
carried out using a waist-mounted accelerometer on a pool
of 36 users, showed a correct authentication rate equal to
88%.

The effectiveness of different metrics, in the context of
gait-based authentication, has been explored in [11]. In par-
ticular, correlation, histogram, high-order moments, and ab-
solute distance have been compared on a set of 50 users.
For each user six gait instances have been collected using
an accelerometer placed in their trouser pockets. Best re-
sults were obtained using absolute distance, which achieved
an EER of ∼ 7%. The effects caused by disturbing fac-
tors were also preliminarily studied (in particular, carrying
a backpack).

A method for gait-based verification on smartphones is
discussed in [18]. Acceleration samples were collected at 100
Hz and processed in blocks of 512 samples. Features both in
the frequency and time domain are extracted and provided
as input to a classification system. The adopted classifi-
cation method relies on a Gaussian Mixture Model trained
according to the user’s typical gait pattern. Another model,
the Universal Background Model, is used to represent the
different walking pattern exhibited by a population of indi-
viduals. Verification of the user is based on the output of
the two models. The method has been evaluated both in
controlled and uncontrolled conditions. In controlled exper-

iments, a set of 47 subjects performed a number of activities,
such as standing, sitting, walking, biking, etc, while carrying
their smartphone (different positions were allowed). In such
scenario the obtained EER was approximately 14%. The un-
controlled experiments comprised eight subjects, who were
monitored for two/three weeks.

A comparison of some gait-based authentication methods
is presented in [21]. In particular, a novel technique is com-
pared with some existing ones ([12, 24, 9]) on a common
dataset of gait traces. The size of the dataset is very large,
as it comprises traces collected from ∼ 740 users. Never-
theless, the number of gait-instances for each user is rather
small: only two instances, one used for training and the
other for evaluation (this obviously poses a limit on the de-
gree of diversity in the set of gait instances produced by a
single user).

Gait-based authentication is also used to detect user spoof-
ing in mobile healthcare systems [23]. Accelerometer read-
ings were collected at 50 Hz using a common smartphone.
Only the vertical component of acceleration is used to per-
form authentication. Extraction of gait cycles is based on
the Pearson’s correlation coefficient. Then, to cope with the
possible different walking speeds, collected gait cycles are
aligned to a reference step cycle via interpolation. The pro-
posed framework is able to compute user verification either
on the mobile device or on an external server. If executed
on the mobile device, authentication is carried out using
weighted Pearson correlation coefficients; if executed on the
server-side, authentication is achieved by means of a Sup-
port Vector Machine classifier. An experimental evaluation
was carried out involving a set of 26 subjects for six months.
Over 3000 traces were collected (each trace included ten min-
utes of walking). An 80% detection rate and 10% false pos-
itive rate were obtained when classification occurred on the
mobile device. The server-based approach showed a better
detection rate (90%) and similar false positive rate.

Another system related to mobile healthcare is the one
discussed in [3]. From previous studies, the same authors
observed that a number of users involved in medical treat-
ment tried to cheat (e.g. by giving the monitoring device to a
friend, or simulating prescribed activities). Thus, they pro-
pose a method for user authentication based on a Random
Forest classifier. An experimental evaluation was carried out
with the help of six volunteers in controlled conditions.

A gait-based identification and authentication method,
which relies on a smartwatch as a means for collecting ac-
celerometric information, is discussed in [14]. Approximately
five minutes of walk in a set of 59 users were collected us-
ing commercial smartwatches. Sampling frequency was set
at 20 Hz. More than 40 features were extracted from raw
data and used as input to a set of classifiers (Random Forest,
Rotation Forest, Naive Bayes, and Multi-Layer Perceptron).
Using ten seconds of data, the best performing method, in
terms of identification, was Rotation Forest, which achieved
an accuracy equal to 84%. As far as authentication is con-
cerned, the best performing classifiers were Random Forest
and Rotation Forest, with an accuracy approximately equal
to 98%. In particular, results about authentication were ob-
tained creating an impostor model. Such model was created
using the traces of four users extracted randomly from the
set of 59 users. Then evaluation was carried out using a dif-
ferent set of four users (again extracted randomly form the
set of all users).
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Figure 1: Flowchart representation of the proposed
method.

With the exception of the last study, all previous methods
rely on embedded devices and smartphones attached to the
user’s waist, or placed in one of the user’s pockets. Thus, the
possibilities of gait-based authentication using acceleration
collected at the user’s wrist are little explored. Besides pro-
viding a deeper understanding of such solution, this paper
also includes a comparison with a smartphone-based solu-
tion.

3. METHOD
The gait-based authentication method is described by the

flowchart in Figure 1. A wrist-worn device – equipped with
a tri-axial accelerometer – continuously collects accelera-
tion samples. Acceleration samples are used as inputs to
a walking detection algorithm. Walking detection enables
the extraction of gait segments from raw acceleration data.
Each gait segment is a vector of acceleration samples col-
lected during a predefined number of gait cycles. Feature-
extraction is applied to each gait segment to extract a vector
with the most relevant features. Hereafter, we use the term
gait instance to refer to such feature vector. Gait instances
are finally used to feed an anomaly detection technique – ex-
ploiting anomaly detection, the system recognizes whether
a gait instance has been produced by the authorized user.

Each subtask of the authentication method is described
in detail in the following sections.

3.1 Walking detection algorithm
The walking detection technique is mainly based on the

peak-detection algorithm described in [8]. The acceleration
magnitude signal is analyzed so as to identify the group of
peaks produced at each step. A gait segment is detected
when 8 consecutive steps are found. It is a lightweight tech-
nique that can be executed in real time on miniaturized de-
vices and that proved able to achieve high detection accuracy
when the sensor is placed in near-waist position (e.g., in a
trouser pocket, or fixed at the waist using a belt). The tech-
nique has been adapted to work with acceleration signals
coming from a wrist-worn device (e.g., a smartwatch).

An example of the peculiarities of gait acceleration pat-
terns is shown in Figure 2, which shows two acceleration
magnitude (Euclidean norm) signals produced simultane-
ously by the same user. In this experiment the user walked
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(a) Front trouser pocket (thigh) trace.
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Figure 2: Gait acceleration pattern example.

carrying one sensor in a front trouser pocket (Figure 2a)
and another sensor attached to his wrist like a watch (Fig-
ure 2b). In both conditions, the algorithm can exploit the
group of peaks in the acceleration signal that are produced
by each foot contact. It is interesting to observe that the
same groups of peaks are clearly visible even in the wrist
trace – the foot impact is actually transmitted to the ac-
celerometer using the body as a medium [17]. Inevitably,
since the accelerometer is farther from the feet, the signal
is less intense when collected at the wrist. To manage this
difference, the threshold used to detect peaks in the accel-
eration magnitude was lowered for wrist traces.

Each step is numbered and highlighted with a gray vertical
band. In both traces, it is possible to observe the asymme-
try in the signal between consecutive steps/groups. This is
due to the fact that both sensors are on a specific side of
the body (left or right) – the step involving the leg closer
to the sensor produces the highest acceleration peaks, even
when the sensor is wrist-worn. Such steps are highlighted in
Figure 2 with red numbers. In Figure 2a it is clearly visible
that the odd steps were produced by the leg that is carry-
ing the sensor. Conversely, the even steps in Figure 2b were
produced by the leg on the same side as the hand carry-
ing the watch. As previously mentioned, in this particular
experiment the sensors were placed at opposite sides of the
user’s body (right thigh and left arm).

The walking detection technique was further refined adding
a filter based on autocorrelation to reduce the detection of
gait segments characterized by an irregular pattern between
consecutive gait cycles (a gait cycle includes 2 steps, and it
is expected to be regular regardless of the asymmetry in the
position of the sensor).



Table 1: List of features.

AAV AC C1 AC C2

AC DP1 AC DP2 duration

IQR kurtosis max

median mean MCR

MAD min P2P

RMS skewness st.dev.

The aim of this filtering technique was twofold: first, irreg-
ular gait patterns are less suitable for gait analysis; second,
the regularity check can be exploited to filter out “fake” gait
segments, which may be detected when the user is simply
moving the hand that is carrying the device.

3.2 Preprocessing and Feature extraction
An acceleration sample consists of three components, one

per each of the three axes of the accelerometer. In turn, a
gait segment, being a vector of samples, is actually formed
by three acceleration vectors: x, y, and z. The acceleration
measured on these vectors is affected by the orientation of
the device with respect to the user’s body.

To reduce the effect of noise, each acceleration vector is
low-pass filtered using a second-order Butterworth filter with
20 Hz cut-off frequency. Then, an additional vector m (mag-
nitude) is computed by finding the Euclidean norm (accel-
eration magnitude) of each sample in the gait segment:

acceleration magnitude =
√

x2 + y2 + z2. (1)

Acceleration magnitude is insensitive to changes in the ori-
entation of the device.

Two additional vectors can be estimated by projecting
the acceleration vectors on the direction of gravity (vertical
acceleration, v) and on the horizontal plane (horizontal ac-
celeration magnitude, h). The technique to compute these
projections is indicated in [19]. These vectors are relative to
the direction of gravity, and are thus insensitive to changes
in the orientation of the device with respect to the user’s
body.

In sum, there are six vectors that can be used to feed
feature extraction algorithms: x, y, z, m, v, and h. Here-
after, we use a suffix to describe on which specific vector
a feature-extraction algorithm is computed. For example,
meanx indicates that the mean is found on the acceleration
vector x.

The feature-extraction algorithms considered in this paper
are listed in Table 1. The list includes widely-used statistical
features, such as mean, median, skewness, kurtosis, Peak-
to-Peak amplitude (P2P), standard deviation (stDev), and
Median Absolute Deviation (MAD).

The Average Absolute Variation (AAV) has been success-
fully used in fall detection and gait analysis systems [1, 6,
7]. It is found as:

AAV =

N−1∑
i=1

|xi+1 − xi|
N

, (2)

where N is the number of samples in the gait segment, and
xi is the i-th sample in the segment.

Autocorrelation-based features are used to evaluate regu-
larity among gait cycles [20]. Unbiased autocorrelation co-
efficients are found as follows:

ACk =
1

N − k

N−k∑
i=1

xi ∗ xi+k,

where ACk is the k-th unbiased autocorrelation coefficient;
N is the number of acceleration samples in the gait segment;
xi is the i-th sample minus the mean of the samples in the
gait segment. Coefficients are also normalized to one at zero
lag (AC0 = 1). Finally, the dominant periods in the auto-
correlation signal are found by means of a peak detection
algorithm. Features AC DP1 and AC DP2 describe the lag
of the first and second dominant period, respectively. In
turn, AC C1 and AC C2 are the normalized coefficients at
the first and second dominant period.

The procedure used to select a subset of these features is
described in Section 4.3. The result of feature extraction is
a gait instance, which consists in a vector of features.

3.3 Anomaly detection
The approach used in this paper to distinguish genuine

instances from unauthorized users’ data is based on semi-
supervised anomaly detection [5]. It is supposed that a set
with genuine user’s instances is available to form a training
set. Differently from systems that use supervised classifiers,
this method does not require the availability of other users’
data.

Euclidean distance and Nearest-Neighbor (NN) analysis is
used to assign an anomaly score to each gait instance. This
anomaly score, in turn, is compared against a threshold to
classify a gait instance as normal (genuine user) or abnormal
(unauthorized user).

Let T = {t1, ..., tM} be the set of gait instances of the
genuine user collected during the training phase, and let
dist(a, b) be the Euclidean distance between gait instances
a and b. The first step in finding the anomaly score for a
given gait instance g consists in computing

distmin(g) = dist(g, ng),

where ng is the nearest-neighbor of g in the training set T .
More formally

ng = arg min
i∈T

dist(g, i).

Distance distmin(g) is then normalized using the standard
deviation of the distances between nearest-neighbors in the
training set:

sdT =

√√√√ 1

M

M∑
i=1

(distmin(ti)− distT )2,

where

distT =
1

M

M∑
i=1

distmin(ti).

In particular, normalization exploits the average and stan-
dard deviation of the NN distances among instances in the
training set to produce the anomaly score (AS) as follows:

ASg =
distmin(g)− distT

sdT
. (3)



For example, if the average distance in the training set is
0.8 and standard deviation is 0.2, then a gait instance with
NN distance equal to 1.2 will have AS = 2. Higher anomaly
score values indicate that the instance is more distant from
the user’s training data, and it is thus more likely to belong
to an unauthorized user.

The threshold used to distinguish normal and abnormal
instance (ASth) is selected by evaluating the trade-off be-
tween detecting anomalies and generating false positives.
This trade-off is described in Section 5.2 by means of ROC
curve analysis.

4. EXPERIMENTAL SETTING AND PRE-
PROCESSING

This section describes the experiments performed to gather
gait data, as well as the procedure used to evaluate the per-
formance of gait-based authentication. As previously men-
tioned, besides illustrating a method suitable for wrist-worn
devices, we aim to compare such method with one based on
a device carried in a pocket (near the user’s thigh).

4.1 Wearable device
The device used in the experiments is a Shimmer 3, em-

bedding a TI MSP430 microcontroller (up to 24 MHz clock,
16 KB RAM, 256 KB flash) and an ST Micro LSM303DLHC
accelerometer [25]. Such accelerometer is similar to the ones
found in common smartwatches and activity trackers.

During the experiments, acceleration was sampled with
∼ 50 Hz frequency. Samples were saved to the Shimmer’s SD
memory, to ensure repeatable evaluation of collected data.
However, we also verified that the device is capable of exe-
cuting the proposed method in real time.

4.2 Experiments
Fifteen volunteers (4 females, 11 males , age 28.2 ± 2.5,

height 174.2 ± 9.6 cm, weight 68.7 ± 14.9 kg) were involved
in experiments to gather gait data. Each user carried two
Shimmer 3 devices during the experiment: one in a front
trouser pocket (pocket trace), and another worn like a watch
(wrist trace). Thus, two simultaneous traces were collected
by each volunteer, enabling direct comparison of the same
technique with a pocket and wrist-worn device.

Volunteers were asked to walk 6 times a corridor: 2 times
at preferred pace, 2 times at fast pace, and finally 2 times
keeping the hand inside their pocket. In that way, we were
able to collect (at least) 3 different gait patterns from each
user. In addition, at the end of the experiment the volun-
teers were asked to perform random movements with their
hands, aiming at producing fake gait detections (movements
included, for example, drawing an 8 in the air several times).

Collected gait data were processed with the walking de-
tection algorithm to obtain gait segments.

4.3 Feature selection
As discussed in Section 3, the preprocessing module of

the method produces 6 acceleration vectors. Except for
autocorrelation-based features, which were found only on
acceleration magnitude, and the duration feature, which is
simply the duration of a gait segment, all of the other fea-
tures can be computed on each of the 6 vectors. In sum,
there are 83 possible features.

A first reduction of the features can be performed consid-

ering the particular scenario – pocket vs. wrist. When the
device is worn in a pocket (e.g., a smartphone) it is not re-
liable to assume that the orientation of the device does not
vary over time. Thus, it is key to rely only on acceleration
vectors that are insensitive to changes in the orientation of
the device, namely the acceleration magnitude (m), vertical
acceleration (v), and horizontal acceleration magnitude (h).

A wrist-worn device (e.g., a smartwatch) can be reason-
ably expected to be always worn with the same orientation
with respect to user’s arm. Thus, wrist-based gait analy-
sis can exploit the acceleration vectors based on the local
coordinate system of the accelerometer (x, y, z). On the
other hand, the estimation of vertical and horizontal accel-
eration, which refers to the direction of gravity with respect
to the reference frame of the accelerometer, is unlikely to
provide useful information. Indeed, the direction of gravity
with respect to the device may change significantly within
a gait segment, due to the possible pendulum-like swing of
the arm.

In sum, the following three approaches were considered
regarding the initial set of features:

1. pocket-worn device with features based on orientation-
independent acceleration vectors (m, v, h);

2. wrist-worn device with the same approach as for the
pocket-worn case;

3. wrist-worn device with features based on x, y, z, and
m (estimation of vertical and horizontal acceleration
is not used).

For each approach, feature selection was performed using
the Correlation-based Feature Subset Selection method with
greedy hill climbing search [13]. The result of feature selec-
tion for each approach is shown in Table 2. Hereafter, we
refer to the three approaches as POCKETmhv, WRISTmhv,
and WRISTxyzm.

4.4 Evaluation procedure of the anomaly de-
tection technique

This paper studies a one-versus-all authentication prob-
lem, where the system is trained only on the genuine user’s
data and is expected to recognize unauthorized attempts
to use the device. Consequently, for each volunteer in the
dataset, the method is tested by using that volunteer as the
genuine user and the others as the possible impersonators.
The evaluation procedure consists of the following steps:

• a volunteer x is set as the genuine user;

• each instance of x is used to estimate the False Re-
jection Rate (FRR) of an anomaly detection classifier
trained on the remaining instances (leave-one-instance-
out cross-validation);

• the False Match Rate (FMR) of the same classifier is
estimated with all the data belonging to the other vol-
unteers;

• results related to FRR and FMR are averaged over
cross-validation iterations.

FRR and FMR are metrics that are typically used to de-
scribe the performance of authentication systems. FRR is



Table 2: Evaluated approaches and selected features.

Approach name Position Input Selected features

POCKETmhv Trouser pocket m, h, v AC C1, AC DP2, kurtosish, kurtosism, kurtosisv, MADm, maxh, MCRm,
MCRv, meanh, medianh, medianv, minm, minv, st.devh, skewnessh,
skewnessm, skewnessv

WRISTmhv Wrist m, h, v AC C1, AAV m, AC DP1, AC DP2, duration, IQRm, kurtosism, MCRh,
MCRm, medianm, medianv, RMSm, st.dev.h, skewnessh, skewnessm

WRISTxyzm Wrist x, y, z, m AC C1, AAV y, AC DP2, kurtosisx, maxx, maxz, MCRm, MCRy,
MCRz, meanx, meany, meanz, medianm, medianx, medianz, minx,
RMSz, skewnessy, skewnessm

the proportion of genuine user’s instances that are not au-
thorized by the system. FMR is the proportion of unau-
thorized gait instances that are authorized by the system
(inverse of the true positive rate).

By choosing a specific threshold on the anomaly score,
it is possible to apply the procedure described above and
obtain the result in terms of FRR and FMR for each user.
However, to better evaluate the performance of the system,
it is interesting to evaluate the performance as the threshold
is varied. The result of this evaluation is a ROC curve,
that depicts the trade-off between the true positive rate and
the false positive rate [10]. In this biometric application
based on anomaly detection, let us define a positive as the
detection of an unauthorized user, and a negative as the
detection of the genuine user. According to this definition, it
follows that the true positive rate corresponds to the inverse
of FMR (1-FMR), while the false positive rate corresponds
to the FRR. The ROC curve thus plots 1-FMR versus FRR.

The overall performance of a ROC curve is typically mea-
sured, in the context of biometrics systems, in terms of Equal
Error Rate (EER), which is the point of the curve having
the same FMR and FRR value. The Area Under the Curve
(AUC) is another performance indicator that is commonly
used.

5. RESULTS AND DISCUSSION
In the following we first describe and discuss the results of

walking detection, both in pocket and wrist position. Then,
we present and discuss the results of gait-based authentica-
tion with the three different approaches introduced in Ta-
ble 2. In addition, results related to gait-based identification
are shown as a corollary contribution.

5.1 Walking detection results
The histograms in Figure 3 show detailed results of walk-

ing detection on both acceleration traces (pocket and wrist).
In particular, Figure 3a shows the number of gait segments
detected, while Figure 3b describes the average time interval
required to detect a gait segment. Both results – detected
segments and time interval – are shown per each user and
on average.

In terms of detection rate, it can be observed that the
algorithm performed fairly well even at the wrist. Indeed,
in most cases the difference between pocket and wrist was
minimal (± 2 detected segments). On average, when the
user is walking, a gait segment is provided every 4.9 s in the
pocket and every 5.5 s at wrist position. In the worst case,
which occurred at the wrist for user 15, a gait segment is de-

Table 3: Average results of the three approaches.

Metric POCKETmhv WRISTmhv WRISTxyzm

AUC (%) 99.6 97.3 99.6

EER (%) 2.5 8.0 2.9

tected every 7.4 s. This detection rate reasonably meets the
requirements of a gait-based authentication method, where
detecting all the steps with high sensitivity is not strictly
necessary.

It was also verified that the autocorrelation-based filter
successfully filtered out all the random hand movements
made by volunteers at the end of their experiments. As it is
shown in the next section, filtering out irregular patterns is
key to preserve authentication accuracy.

5.2 Gait-based authentication results
Figure 4 shows the results of ROC analysis applied to

the three evaluated approaches. WRISTmhv clearly shows
a reduced performance with respect to POCKETmhv, con-
firming that the estimated vertical and horizontal vectors –
when the device is on the arm – provide information that is
of little use for gait analysis. That was highly expected, since
the acceleration-based technique used for these estimations
– described in [19] – is based on the assumption that gravity
has a constant orientation with respect to the local reference
frame of the accelerometer. While this assumption is rea-
sonable in a front trouser pocket, it is likely to be false with
a wrist-worn device, where the device is constantly rotated
due to the arm swing during gait. More advanced techniques
for estimating gravity direction would require the use of a
gyroscope, which we have intentionally excluded to reduce
power consumption and ensure lightweight computational
requirements.

However, the wrist-worn device can successfully exploit
the fact that the local reference frame of the sensor is ex-
pected to remain in consistent position, with respect to the
user’s body, throughout device use (the watch is always worn
the same way). As shown in Figure 4, the WRISTxyzm ap-
proach is actually capable of achieving results very close to
the ones achieved with data collected from the user’s pocket.

Average results in terms of AUC and EER are shown in
Table 3. WRISTxyzm achieved excellent accuracy, with EER
as low as 2.9% and AUC as high as 99.6%. These results are
in line with the best performing gait-based authentication
works in the literature, which are typically based on waist-
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Figure 3: Walking detection results, per user and
on average.

worn or pocket-worn sensors. Also, they are in line with
the results achieved by the POCKETmhv approach, which
showed the same AUC (99.6%) and a similar EER (2.5%).

These results suggest that – taking advantage of their pe-
culiar placement on the user’s body – wrist-worn devices
may represent an effective tool for the collection and analy-
sis of gait patterns, including gait-based authentication.

5.3 The impact of autocorrelation-based filter-
ing on EER
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Figure 4: ROC curve analysis of the three ap-
proaches.

Table 4: Effect of autocorrelation-based filtering on
EER and AUC

Metric POCKETmhv WRISTxyzm

AUC variation (%) +1.2 +6.3

EER variation (%) −3.7 −7.8

As previously stated, autocorrelation analysis is used to
discard highly irregular gait segments that could potentially
“confuse” the classifier. In terms of gait segments detected,
the effect of the filter was negligible for the pocket traces
(−5.2%), and more relevant for the wrist traces (−18%).
However, in the latter case, most of the filtered gait segments
were produced with repetitive hand movements and did not
contain gait information.

The ROC analysis shown in Figure 5 clearly demonstrates
that the effect of autocorrelation-based filtering was key to
improve authentication performance. The first ROC curve,
in Figure 5a, is related to the POCKETmhv approach, while
the one in Figure 5b is related to the WRISTxyzm approach.
In both cases, the AUC and EER metrics are significantly
improved – numerical details are given in Table 4. However,
the effect is much more visible in the wrist-based experi-
ments. The reason is that, when the device is wrist-worn,
spurious hand movements – like those produced by our vol-
unteers at the end of their experiment – may mislead the
walking detection technique.

5.4 Gait-based identification
As a corollary contribution, we here present the results

related to identification. Differently from authentication,
gait-based identification systems attempt to identify gait in-
stances considering a predefined set of users who time-share
the same device. Supervised classification can be used in-
stead of anomaly detection, since a complete training set is
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Figure 5: Effect of autocorrelation-based filtering on the ROC curve.
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Figure 6: Identification accuracy (%) with different supervised classifiers.

available, with examples for all the users to be recognized.
The histogram in Figure 6 shows the overall identification
accuracy obtained by each approach with widely-used clas-
sification schemes and ten-fold cross-validation. Accuracy is
defined as the ratio between the number of correctly identi-
fied gait instances and the total number of instances in the
dataset.

The evaluated classifiers were Nearest-Neighbor, Multi-
layer Perceptron, Random Forest, Rotation Forest, and Multi-
nomial Logistic. The average result among the different
classifiers is also shown. The red, green, and blue bars
show the performance of the POCKETmhv, WRISTmhv,
and WRISTxyz approach, respectively. These results fur-

ther confirm that – when the local reference frame is used –
the wrist-worn device is capable of achieving similar results
with respect to a pocket-worn device. Indeed, the average
result obtained by POCKETmhv (97.3%) and WRISTxyz

(97.4%) is almost identical.

6. CONCLUSIONS AND FUTURE WORK
Wrist-worn devices, like smartwatches and activity track-

ers, are increasingly adopted by the general public. We have
presented an authentication method that uses a wrist-worn
accelerometer to understand if the legitimate user, or some-
one else, is carrying the device. Performance evaluation on
a set of volunteers demonstrated that authentication can be



performed with an Equal Error Rate as low as 2.9%.
Existing methods for gait-based authentication were de-

signed for being executed on smartphones. As discussed in
previous sections, a direct transposition of such methods on
wrist-worn devices could be inadequate. With smartphones,
assuming that the position and orientation of the device is
always the same with respect to user’s body is not possible.
This implies that features have to be computed on a global
reference system, so that the typical acceleration pattern
is preserved if the user changes the position of the device
or its orientation. Since smartwatches are always worn the
same way, there is no need to compute selected features on a
global reference system. In practice, the reference system of
the device can be directly used, thus making implementation
simpler.

Another major difference with respect to smartphones is
the presence of spurious movements, which make detection
and analysis of gait more complex. Hands are subject to a
much larger amount of accelerations, if compared to parts of
the body that are in proximity of the center of mass. Thus, a
smartphone carried in a user’s pocket is generally exposed to
significantly less movements than a smartwatch. We found
that the problems introduced by spurious movements can
be greatly reduced by adopting autocorrelation-based filters
in the walking detection technique. In particular, we found
out that such filters reduce the EER by 7.8%.

The presented method deliberately uses information pro-
duced by a single sensor, the accelerometer. We decided not
to use other sensors commonly available on smartwatches,
such as gyroscopes or magnetic sensors, because the power
consumption of the latter ones is significantly larger than the
power consumption of an accelerometer (in some cases by an
order of magnitude). An energy-demanding method would
be of little practical use on the considered devices, which are
operated through batteries with reduced capacity.

Future work will concern an evaluation of the method in
uncontrolled environment. Another factor that deserves at-
tention is the possibility of continuously training the system
without increasing indefinitely the size of the training set.
As new gait instances are collected, the system has to decide
if they have to be included in the user’s template, and if so
which elements have to be removed.

Acknowledgments
This research was supported by the PRA 2016 project“Anal-
isi di dati sensoriali: dai sensori tradizionali ai sensori so-
ciali” (“Analysis of sensory data: from traditional sensors to
social sensors”), funded by the University of Pisa.

7. REFERENCES
[1] S. Abbate, M. Avvenuti, F. Bonatesta, G. Cola,

P. Corsini, and A. Vecchio. A smartphone-based fall
detection system. Pervasive and Mobile Computing,
8(6):883 – 899, 2012.

[2] H. J. Ailisto, M. Lindholm, J. Mantyjarvi,
E. Vildjiounaite, and S.-M. Makela. Identifying people
from gait pattern with accelerometers. In Proceedings
of SPIE, volume 5779, pages 7–14, 2005.

[3] N. Alshurafa, J.-A. Eastwood, M. Pourhomayoun,
S. Nyamathi, L. Bao, B. Mortazavi, and
M. Sarrafzadeh. Anti-cheating: Detecting self-inflicted
and impersonator cheaters for remote health

monitoring systems with wearable sensors. In
Proceedings of the 11th International Conference on
Wearable and Implantable Body Sensor Networks
(BSN), pages 92–97, June 2014.

[4] L. Bianchi, D. Angelini, and F. Lacquaniti. Individual
characteristics of human walking mechanics. Pflügers
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