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Abstract

Crowdsourcing enables the fine-grained characterization and performance evaluation of today’s large-scale
networks using the power of the masses and distributed intelligence. This paper presents SmartProbe, a
system that assesses the bottleneck capacity of Internet paths using smartphones, from a mobile crowd-
sourcing perspective. With SmartProbe measurement activities are more bandwidth efficient compared to
similar systems, and a larger number of users can be supported. An application based on SmartProbe is
also presented: georeferenced measurements are mapped and used to compare the performance of mobile
broadband operators in wide areas. Results from one year of operation are included.
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1. Introduction

Crowdsourcing exploits the help of the masses to
solve large-scale problems. A task that is too de-
manding for the internal resources of a single organi-
zation can be divided into small and loosely-coupled
activities which are assigned to and carried out by
a population of individuals [1]. Unlike outsourcing,
with crowdsourcing the identity of the cooperating
users is generally not relevant, and the workforce dy-
namically changes according to the necessities of the
delegating organization and the will of the partici-
pants. Crowdsourcing is used in a variety of con-
texts, from the production of creative content to the
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massive analysis of data. Notable examples include
Threadless [2], an online clothes shop where the de-
sign of items is collaborative and user-driven, and
SETI@home, a distributed effort aimed at searching
for extraterrestrial intelligence using spare CPU cy-
cles of users’ machines [3]. There are also several plat-
forms that support crowdsourcing-based interaction,
such as Amazon’s Mechanical Turk [4], Microwork-
ers [5], and Crowdflower [6]. These platforms provide
other companies with methods for submitting tasks,
enrolling users, and managing payments. Although
in some cases the activities delegated to users are
trivial, in other situations the tasks are complex and
require intelligence and/or creativeness. In all cases,
the whole result is greater than the sum of its parts,
and decentralized and distributed intelligence, aggre-
gated through crowdsourcing, can provide an answer
to unsolved scientific and engineering problems.

Crowdsourcing systems have traditionally been
based on the web, as it provides collaboration tools
that are both efficient and easy to use [7]. More re-
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cently, the web-centric interaction model has been ex-
panded to support smartphone-based cooperation [8].
In fact, smartphones are an appealing platform for
crowdsourcing applications: they are always on and
carried by their owners, they are mobile and richly
connected, and they are equipped with an increasing
number of sensors (camera, microphone, etc). When
using a smartphone, the working user is no longer
constrained to a fixed position and he/she can carry
out the requested task at different locations, possibly
using additional input mechanisms. The term crowd-
sensing is used when sensing is the prevalent activ-
ity delegated to participants. Crowdsensing applica-
tions can be classified according to the type of phe-
nomenon being measured. Examples include environ-
mental applications (for observing pollution and wa-
ter levels), infrastructure monitoring applications (for
collecting information about traffic congestions and
road conditions), and social applications (for moni-
toring activity levels of individuals) [9, 10]. In sev-
eral scenarios, the crowdsensing activities are carried
out without a well-defined employer-employee rela-
tionship. Users may be interested in participating in
sensing activities for a number of reasons, including
altruism or the scientific relevance of the end goals.
In other cases they perceive the results of the sens-
ing activity as also being useful for themselves (even
though the small task each user completes may be
scarcely significant, the level of interest in the aggre-
gated results can be much higher).

An increasing number of crowdsourcing/crowd-
sensing systems are related to networking: the crowd-
based approach provides a solution to the need for
collecting detailed information on today’s large-scale
networked systems. For instance crowdsourcing is
currently used for the following purposes: i) detec-
tion of traffic differentiation silently applied by Inter-
net service providers to their customers [11], ii) char-
acterization of the Internet and detection of network
problems [12, 13], iii) analysis and measurement of
wireless networks [14].

This paper presents SmartProbe, a network mea-
suring tool designed to operate in a mobile crowd-
sensing scenario. Using smartphones as measuring
elements, SmartProbe estimates the bottleneck ca-
pacity of Internet paths. Since it is executed on user
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Figure 1: An Internet path with links characterized by different
capacities and utilization levels.

devices, SmartProbe was designed and customized to
generate less traffic, and thus to use less energy, com-
pared to similar systems (experimental results show
a significant reduction in sent/received data). In ad-
dition, since the system has to be used by a possi-
bly large number of users, the software infrastructure
on the server-side was designed to cope with mul-
tiple measurement requests. Measurements can be
georeferenced thanks to the self-positioning ability of
smartphones. A demo application is also presented:
different mobile broadband operators are compared
using crowdsourced measurements. Other possible
uses include mapping the performance of Wi-Fi ac-
cess points in an urban area or analyzing the perfor-
mance of a cell phone operator in relation to varia-
tions in user positions.

2. Background and motivation

Let Li be the i-th link of an Internet path, with
i ∈ 1..n. The capacity Ci of the i-th link is the
maximum data rate that link Li can achieve. The
bottleneck capacity of an Internet path is defined as
the capacity of the narrowest link of the path consid-
ered [15], and thus it is equal to min{C1, ..., Cn} (in
other words it is the capacity of the link that imposes
a bottleneck on the path in terms of data rate). The
capacity of a link (or a path) is a static property that
does not change with time, and should not be con-
fused with the available bandwidth. The latter rep-
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resents the residual bandwidth not currently in use
by other traffic (a property whose value depends on
current conditions) [16, 17]. If Ai(t) is the available
bandwidth of Li at time t, then Ci ≥ Ai(t) holds. For
example, the bottleneck capacity of the path shown
in Figure 1 is C3, the capacity of L3, whereas the link
with the smallest available bandwidth is L5 (consid-
ering the current utilization level as depicted by the
gray areas).

The ability to measure the bottleneck capacity is
useful not only for network protocols (e.g. for con-
gestion control) but also at the application and user
levels. In fact, this information can be used to tune
the operational parameters of streaming applications
and peer-to-peer systems, or to evaluate the actual
performance of a residential ISP connection.

Methods and techniques for measuring this net-
work property have received significant attention
from both researchers and practitioners [18, 19, 20].
In addition, while most of the initial activities have
been carried out for wired networks, more recently
the study of techniques specifically designed for wire-
less environments has gained momentum [21, 22]. In
this paper we move forwards in two different direc-
tions. On the one hand, we continue this trend by
giving even more relevance to wireless scenarios. The
aim is to make the evaluation of the bottleneck ca-
pacity more suitable for execution on mobile devices
(smartphones and tablets, which have surpassed com-
mon PCs in terms of sales, now represent the pre-
ferred Internet-enabled devices for the majority of
users). On the other hand, we believe that an evo-
lution of bottleneck capacity estimation tools in a
crowdsourcing perspective may pave the way for in-
teresting and unexplored usages, as it may provide
fine-grained information on today’s large scale net-
worked systems.

The evaluation of the bottleneck capacity in a
smartphone-based crowdsourcing scenario must take
into account i) bandwidth and energy efficiency, ii)
tuning for wireless connections, and iii) support for
possibly large numbers of users.
Bandwidth and energy efficiency. On smart-
phones and tablets, energy is a scarce resource and
communication can be expensive. As a consequence,
tools that do not consider these factors are likely to

be abandoned by their users. Almost all the tech-
niques designed and implemented so far have been
conceived with the assumption that the devices are
connected via wired links. Thus, they are not partic-
ularly efficient from this point of view.

In SmartProbe, the estimation of the bottleneck
capacity has been designed to be suitable for mo-
bile devices, with bandwidth efficiency as a primary
goal. Reducing the amount of data transmitted and
received, in turn, brings advantages in terms of en-
ergy efficiency. Our techniques considerably reduce
the amount of traffic: up to 96% for 3G cellular net-
works and up to 89% for Wi-Fi networks.
Tuning for wireless connections. Most existing
techniques do not behave properly in wireless scenar-
ios, which tend to have high bit error rates. In ad-
dition, the tools currently available for smartphones
implement rather trivial techniques: they perform an
HTTP GET request and calculate the time needed
to retrieve the requested page. However what is ob-
tained is just an estimation of TCP throughput and
not of bottleneck capacity. These are actually two
different properties that should not be confused [17]
(for instance, TCP throughput depends on a number
of factors such as buffer size, round trip time, and
retransmission errors).

SmartProbe introduces customizations to state-of-
the-art techniques in order to operate more smoothly
in wireless scenarios.
Support for possibly large numbers of users.
The use of bottleneck estimation methods from a
crowdsourcing perspective creates a new set of prob-
lems. Countermeasures are needed to prevent si-
multaneous measurements from interfering with each
other.

SmartProbe tackles these problems by incorpo-
rating scheduling and queuing mechanisms (on the
server-side) to support large numbers of users.

3. Estimation of bottleneck capacity: theory
and state of the art

Many capacity estimation techniques are based on
the dispersion of a pair of packets. If link i has ca-
pacity Ci, transmitting a packet with size P on such
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Figure 2: A pair of packets going through a set of links with
different capacities.

link requires τi = P/Ci. When two packets are sent
back to back, they reach the receiver with a disper-
sion D = P/C, where dispersion is the time between
the last bit of the first packet and the last bit of the
second packet. If the transmission of the two packets
entails going through n links, the dispersion at the
receiver will be D = P/min{C1, ..., Cn}. Thus, by
measuring on the receiver the dispersion of a couple
of packets with a known size, it is possible to calculate
the bottleneck capacity [16, 18]. Figure 2 shows a pair
of packets (PACK1 and PACK2) going through a set
of links. The smaller the capacity of a link, the longer
the time needed to transmit the packets. When the
two packets reach the destination host the dispersion
depends on the capacity of L2, which is the narrowest
link. This technique forms the basis of a large set of
tools including, for instance, Pathrate [23] and Cap-
Probe [19]). In general, this procedure is repeated
several times (i.e. several packet pairs are sent) to
obtain statistically significant results.

Systems based on the dispersion of packet pairs
may be inaccurate in the presence of high speed
links [20]. Capacity is estimated as C = P/D, but in
high speed networks C is large and P is limited by
the size of the Maximum Transmission Unit (MTU).
As a consequence, D becomes very small, which may
lead to timer resolution problems. For example, let
us consider a 1 Gbps network where MTU is 1500 B:
in this case D is equal to 12µs, a value that cannot
be easily measured with common system timers.

Another possible source of inaccuracy is interrupt
coalescence, a technique in which Network Interface
Cards (NICs) generate a single interrupt for multi-
ple packets, when they are received in a short time
interval [24]. With interrupt coalescence, D gets re-

Figure 3: Delay sum components.

duced because of data buffering and, in the end, the
resulting C may be incorrect.

These problems are solved by enlarging the
numerator of the above introduced equation, i.e.
by sending a larger amount of data from source to
destination. Since the MTU cannot be enlarged
indefinitely, the only possibility is to send a larger
number of packets. The capacity can thus be
computed as:

C =
(k − 1)P

D
(1)

where k is the size of the train and D is now the
dispersion between the first and last packet of the
train.

The presence of cross-traffic in the path – that is
Internet traffic generated by other sources and dis-
patched by the same router(s) – can alter the dis-
persion values. This may lead to capacity estimation
errors. Moreover, since packet trains are longer than
packet pairs, techniques based on trains are more
prone to this problem than the ones based on pairs.

Some tools include mechanisms for reducing the
effects of external noise. PBProbe adopts the con-
cept of delay sum to minimize the under- and over-
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estimations caused by cross-traffic. Figure 3 shows
the estimation procedure in PBProbe. In particular,
the bottleneck capacity is estimated along the path
that goes from A to B. On receiving a Request To
Send (RTS), A sends a train of probes to B. The
delay sum for the i-th train, indicated as Si, is com-
puted as the sum of the delays experienced by the
first and the last packet of that train. Thus, if n
trains are used, the minimum delay sum identifies
the train that has experienced the minimum queu-
ing delay. Once the train in a campaign with the
minimum delay sum has been identified, the capacity
is computed with Equation 1 using the dispersion D
experienced by such train.

PBProbe was originally designed to estimate the
bottleneck capacity of high-speed wired networks,
but it was also successfully used to infer the bottle-
neck capacity in wireless environments [20]. The con-
sumption of resources is the main issue that prevents
the direct adoption of PBProbe on mobile phones. To
obtain a valid result, PBProbe uses n = 200 trains,
where each train is composed of k packets of 1500
bytes. The larger the value of k, the larger the dis-
persion time D experienced between the arrival of
the first and last packet of each train and, as a con-
sequence, the smaller the impact of potential interfer-
ence phenomena caused by interrupt coalescence and
by timer resolution. To identify the correct value of
k, PBProbe compares the dispersion time D regis-
tered by trains with a threshold value Dthresh: if any
of the trains experience D < Dthresh, then the train
length is increased tenfold and the computation starts
again from scratch. In [20], Dthresh = 1 ms is con-
sidered the minimum value able to limit the impact
of system interferences. This means that PBProbe
requires sending about two thousand packets, i.e.
about 3 MB of data, to correctly compute the ca-
pacity of a 802.11g wireless network.

On devices with limited resources, such as smart-
phones, Dthresh = 1 ms is not a realistic value. As
discussed in the following (in Section 4.4), the impact
of interference phenomena on these devices is accept-
able when Dthresh = 10 ms. In this case, PBProbe
would require more than twenty thousand packets,
i.e. about 30 MB of data, for a 802.11g network. In
general, the amount of data produced by PBProbe

Figure 4: Overview of the system.

to correctly infer the bottleneck capacity of mobile
networks (assuming that Dthresh is equal to 10 ms)
is between about 300 KB and 300 MB2. This often
represents a problem: a large amount of transferred
data is likely to lead to a significant consumption of
energy and, depending on the commercial agreement
between users and mobile operators, it may also lead
to economic costs.

4. Estimating the bottleneck capacity on
smartphones

This section presents an overview of the Smart-
Probe system and provides the details of the bottle-
neck estimation procedure.

4.1. System overview

As previously mentioned, measuring the bottleneck
capacity along a path requires active communication
between the two endpoints. The source and destina-
tion hosts exchange a set of packets, usually called
probes, and collect timestamps to infer this property

2300 KB is obtained when considering the parameters of a
slow connection like GPRS, a declining technology. Common
values are thus more likely in the higher end of the range.
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of the network. The procedure is generally repeated
several times to obtain accurate results.

Figure 4 shows a high-level overview of the Smart-
Probe system. A number of clients (smartphones) in-
teract with the main server, which coordinates their
activities and acts as collector of results. Other sec-
ondary servers are used as endpoints for bottleneck
capacity estimation measurements. Each individual
bottleneck capacity estimation server (BCES) is able
to handle a number of clients.

When a user starts a measurement, the smart-
phone contacts the SmartProbe server (1) which
replies with the address of the BCES to be used as
the measurement endpoint (2). The selection of the
best BCES can be based on the country of the device
or its geographical coordinates. The client then per-
forms the required operations by interacting with the
given BCES (3). The result is the estimated bottle-
neck capacity along the path that goes from the client
to the selected BCES. The measurement procedure is
executed two times to obtain the bottleneck capacity
for the two directions. Results are then forwarded by
the client to the SmartProbe server (4), where they
are saved onto persistent storage.

Measuring the bottleneck capacity does not require
a large amount of time. However, given that the sys-
tem is designed to operate in a crowdsourcing sce-
nario, a single BCES has to cope with numerous users
and it may be involved in multiple measurements at
the same time (as depicted on the right-hand side of
Figure 4). It is clear that without appropriate strate-
gies, simultaneous measurements (5) could be com-
promised or distorted because of mutual interference.
For this reason, BCESs include mechanisms for mul-
tiplexing and queuing measurement requests coming
from different clients. These methods are described
in Section 5.

SmartProbe is currently available as a service pro-
vided by the Portolan platform, a smartphone-based
crowdsourcing system aimed at sensing large-scale
networks. The SmartProbe functionalities, on the
client-side, were incorporated as a module of the Por-
tolan app, which besides bottleneck estimation pro-
vides other network tools (signal coverage maps and
exploration of the graph of the Internet) [25, 26, 27].
The Portolan app (for Android), and thus also Smart-
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Figure 5: SmartProbe protocol.

Probe, is available for free on Google Play.

4.2. Protocol overview

The main steps of the bottleneck estimation proce-
dure are shown in Figure 5. Initially, one of the two
hosts operates as Estimator (E) – i.e. the host that
asks for packets and computes the capacity – while
the other acts as Prober (P), i.e. the host that waits
for requests and sends packet trains. Each phase be-
gins with an UDP handshake between Prober and
Estimator to synchronize and initialize the two hosts,
followed by the transmission of the train of UDP
packets. The Estimator starts the handshake by
sending a START message to the Prober, which
replies with an ACK. After this, each host calculates
the minimum k that has to be used to compute the
capacity without being affected by timer resolution
and interrupt coalescence problems (see Section 4.5).
The smallest k is chosen for the measurement, since
the slower link introduces a delay large enough to
estimate the capacity correctly in both directions.

The Estimator then starts the measurement by
sending an UDP control message named RTS (Re-
quest To Send), which triggers the dispatch of an
UDP train. The RTS message contains the number
of packets k that the Prober has to use for the train it
is going to send. The dispatch of every UDP control
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i← 0
failed← 0
Dmin ← +∞
Smin ← +∞
k ← kinitial

while(i < n)
Set timeout
Receive packet train i
if (timeout triggered )

failed← failed + 1
if (failed == 3)

i← 0
failed← 0
k ← max(bk/2c, 2)
Dmin ← +∞
Smin ← +∞
continue

else
Measure Di and Si

if (Si < Smin)
Smin ← Si

Dmin ← Di

i← i + 1
Compute capacity with Dmin

Figure 6: SmartProbe estimation algorithm.

message also starts a timer that allows the two hosts
to not stall in case of packet losses. Once the Estima-
tor has correctly received all the packets of a train, it
computes the dispersion and then the capacity (us-
ing Equation 1). Otherwise the train is invalidated
when the timeout expires. If multiple failures are ex-
perienced, the two hosts assume that the network is
congested and the experiment is restarted by halving
the train length. The estimation is completed when n
valid trains are received. When this happens an END
message is sent by the Estimator to the Prober. Once
finished, Prober and Estimator swap their roles and
the procedure is repeated, to obtain an estimation of
the bottleneck capacity in the opposite direction.

The SmartProbe algorithm is expressed by the
pseudo-code in Figure 6.

4.3. Dispersion and capacity

SmartProbe computes dispersion according to a
procedure that enhances the procedure based on de-
lay sum. Let us call t1,i the delay registered by the
first packet of the i-th train, and tk,i the delay of
the last packet of the same train. Let us also define
t1

min = min t1,j , j ∈ 1..i, i.e. the minimum inter-
val registered so far between a request to send and

Figure 7: The capacity values obtained with the different trains
are shown to the user.

the arrival of the first packet of a train. The capac-
ity value for the i-th train is then calculated using
the dispersion value Di = tk,i − t1min, and applying
Equation 1. A similar technique, for packet pairs, has
also been presented in [28].

This approach has been followed because the
value of capacity for the i-th train, calculated using
tk,i − t1,i as dispersion value, may generate an over-
estimation due to compression phenomena [20]. In
fact, a better estimate of the minimum time needed
to receive the first packet of a train may be already
available. In other words, we can state that if the
first packet in a train experienced an arrival time
larger than the minimum, then this is due to cross-
traffic. Therefore, a more reliable estimation of the
capacity, for the i-th attempt, is obtained when using
Di = tk,i − t1min as the dispersion value.

This procedure is repeated n times (for all trains),
then the capacity value corresponding to the mini-
mum delay sum is selected as the one that best esti-
mates the bottleneck.

Once the estimation is completed, the final results
are shown to the user. Besides the bottleneck capac-
ity values in upload/download, SmartProbe displays
all the values computed during the estimation pro-
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cess. Figure 7 shows the measured capacity against
the train number.

4.4. Selection of Dthresh in a smartphone-based sce-
nario

In previous literature, Dthresh is set to 1 ms on
the basis of experimental results obtained from wired
servers. Unfortunately, this value cannot be directly
applied to a smartphone-based scenario, as these de-
vices are characterized by relatively scarce resources.
Thus, we run a set of experiments aimed at finding
the smallest Dthresh value that provides an accept-
able loss of accuracy (due to timer resolution and
interrupt coalescence).

We followed an approach derived from the one de-
scribed in [20]. In particular, we analyzed the ac-
curacy of smartphone-based measurements in an un-
loaded Wi-Fi network. The experimental setup con-
sisted of a smartphone connected to an 802.11g wire-
less network and a BCES on the same wired LAN
of the wireless access point (Figure 8). We var-
ied the value of k to generate trains of increasing
length (and thus characterized by increasing disper-
sion). For each train length, the measurement has
been repeated 100 times. The results are depicted
in Figure 9: the average result of the tool converges
to a stable capacity value when using trains com-
posed of more than 40 packets. This value of k,
by applying Equation 1, leads to a dispersion value
D ∼ 10 ms, which we consider to be the minimum
dispersion value Dthresh on smartphones (the effects
of operating system interferences are not negligible
with smaller values).

4.5. SmartProbe bandwidth-saving features

SmartProbe includes bandwidth-saving features
to make the estimation procedure compatible with
resource-constrained devices.

4.5.1. Packet train length

In PBProbe the value of k is chosen dynamically
by analyzing the dispersion time: if a train is re-
ceived with a dispersion value lower than a prede-
fined threshold Dthresh = 1 ms, then k is increased
tenfold.

Figure 8: Experimental setup: the server is a Pentium 4,
2.80GHz machine equipped with 2 GB RAM running Linux
Ubuntu 11.04, whereas the smartphone is a Samsung Galaxy
Nexus GT-19250 running Android 4.0.3; both the server and
the access point are on the same Ethernet LAN with 100Mbps
NICs, while the smartphone is connected via 802.11g to the
access point.

SmartProbe follows a different approach: the a pri-
ori knowledge about the type of network to which the
smartphone is connected and the nominal capacity of
that type of network are used to determine the initial
value of k (kinitial). The type of network the smart-
phone is connected to is directly provided by mobile
operating systems. The nominal capacity typically
represents an upper bound of the real wireless per-
formance [29], thus it can be used to understand the
minimum number of packets required to produce a
dispersion value larger than Dthresh. The value of k
is dynamically lowered by SmartProbe whenever too
many trains experience packet losses. This can be
caused for example by the presence of traffic shapers
on the link or by excessive contending traffic on the
wireless access point. In these cases, the application
still tries to retrieve the value of the bottleneck ca-
pacity by progressively lowering the value of k. The
procedure stops when k becomes equal to 2, i.e. when
a simple packet pair is used.

The initial value of k, from which the computation
starts, is obtained by applying Equation 1, where C
is the nominal capacity of the network type currently
in use, P is 1500 B and D is Dthresh. Table 1 summa-
rizes the values of kinitial for common wireless net-
works: the faster the network, the larger kinitial.

4.5.2. Number of trains per campaign

Another factor that makes previous techniques
less usable on smartphones is that they use a fixed
amount of trains for each measurement (e.g. 200
trains, as previously mentioned). To decrease the
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Figure 9: Stability of capacity estimation when varying the
train length.

Table 1: Nominal capacity and initial train length per wireless
technology.

Network Cap. [Mbps] kinitial

Wi-Fi 802.11
b 11 11
a,g 54 46
n 450 376

Mobile 2G
GPRS 0.171 2
EDGE 0.473 2

Mobile 3G
UMTS 1.8 3
HSPA 14.4 13

Mobile 4G LTE 326.4 273

amount of traffic – and therefore the costs in terms of
connection fees and battery consumption – n needs
to be significantly reduced. We thus performed a
campaign of 100 experiments with n = 200. In each
test we first retrieved the most reliable capacity C200

using the full sample list. Then, we computed the
capacity Cm that would be obtained by considering
only the first m trains. Finally, we calculated the
error between C200 and Cm. Figure 10 shows the
distribution of errors when varying m (median value,
inter-quartile and 90th percentile). The median value
of the error becomes close to zero for m ≥ 60, mean-
ing that n = m = 60 is sufficient to infer the correct
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Figure 10: Error when varying the number of trains (with
respect to 200 trains).

capacity value most of the times. Obviously, reducing
the number of trains leads to an unavoidable loss of
accuracy. However in an environment where saving
energy is fundamental, the choice of n = 60 repre-
sents a good trade-off between accuracy and perfor-
mance.

5. Supporting a large number of users

In a crowdsensing scenario, it is likely that multiple
users will want to measure their bottleneck capacity
simultaneously. This requires the presence of proper
mechanisms on the server side, so that multiple esti-
mations can be carried out without interfering with
each other.

5.1. SmartProbe infrastructure: server side

The main problem in satisfying several requests at
the same time is that the computation and traffic load
generated by multiple clients may reduce the accu-
racy of measurements. In fact, requests from differ-
ent sources converge to the same BCES using a single
link (Figure 11). Similar problems may occur when
multiple clients act as Estimators. For instance, sup-
pose that one client sends an RTS to the server; if the
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Figure 11: Bottleneck capacity estimation servers are con-
nected to the Internet through a single link.

server is busy because it is satisfying another request,
it will not be able to respond immediately to the new
client.

These problems can be avoided by preventing mul-
tiple clients from entering the active measurement
phase at the same time. To this purpose, the server
includes mechanisms for scheduling operations with
clients. The execution time of a client action (i.e.
sending a train of packets) depends both on its geo-
graphical position, which influences the RTT, and the
connectivity type, as the length of the train changes
with the type of network (Wi-Fi, UMTS, etc.). As
a consequence, slower (or more distant) clients may
keep the server busy more than faster (or closer)
ones. Thus, each BCES adopts a Deficit Round
Robin (DRR) scheduler for serving the requests com-
ing from clients [30].

Each requesting client is represented as an inde-
pendent flow of the DRR scheme, where each flow
has its own queue (as shown in Figure 13). In other
words, the list of flows/queues represents the set of
clients currently involved in an estimation. When an
estimation is completed, the associated queue is re-
moved from the list. The size of the elements en-
tering each DRR queue (using DRR terminology)
corresponds to the time a given client is assumed
to need to perform its next actions. Let Vnet,i be
the time needed by client i, connected via network
type net, to perform its next measurement. Vnet,i
can be calculated as the RTT between the client con-
sidered and the server, plus the time it takes to send

a train composed of k packets, each P bytes long,
over a network with nominal capacity Cnom (i.e.,
Vnet,i = RTTnet + (knet,i ∗ P )/Cnom).

A Deficit Counter (DC) is associated with every
queue. The scheduling algorithm is described by the
diagram shown in Figure 12: the two depicted activ-
ities may occur in parallel and are event-triggered.
When the server receives a connection request from a
new client, a new queue is created and measurement
operations are added to that queue (on the left-hand
size of Figure 12). The size of operations is calculated
as mentioned above. The new queue is then inserted
in the list of currently managed clients. As soon as
the list becomes non empty, the activity depicted in
the right-hand side of Figure 12 is triggered. One
of the queues is selected as the current one, and an
amount equal to Quantum Size (QS) is added to the
DC of that queue. If the value contained in DC is
greater than the size of the head element of the cur-
rent queue, the measurement operation can be exe-
cuted, otherwise the next queue is processed. If the
operation is executed, the amount corresponding to
its size is removed from DC and the client is served.
The just processed operation is removed from the
queue. When a queue becomes empty it is removed
from the list. If the list is not empty the next queue
is processed, otherwise the server goes idle and waits
for new connections from clients.

Figures 13a and 13b show a scenario where three
clients are simultaneously interacting with the server.
The three clients are connected to the Internet us-
ing different access technologies: EDGE, GPRS, and
LTE. The duration of the probing operations is as-
sumed to be equal to 100 with GSM, 75 with EDGE,
and 50 with LTE. In Figure 13a a QS equal to 100
is added to the DC of the first queue, then the first
element of this queue can be processed as the value of
DC is greater than 75. The remaining amount (25)
is left in DC for the next round (Figure 13b). The
round robin pointer moves to the second queue and
QS is added to its DC. Also in this case the value
in DC is sufficient for processing the first element of
the second queue (but in this case 0 will be left in
DC). This procedure is repeated until all clients have
completed their operations.

We studied the behavior of our DRR-based solu-

10



Figure 12: Activity diagram of scheduling

tion with respect to a system based on a First Come
First Served (FCFS) policy. Evaluation was carried
out through numerical analysis. The number of mea-
surement requests per hour was varied between 100
and 800, to study the behavior of the two policies
under different workloads. Communication between
clients and server was characterized by RTTs uni-
formly distributed between 0 and 20 ms. In the con-
sidered scenario, all access technologies were equally
represented. Figure 14 shows the obtained results in
terms of service time (the amount of time between
the time a request is issued by a client and the time
the estimation is completed). As expected DRR and
FCFS operate similarly when the the load is light: as
soon as a request is received it can be immediately
served, independently from the scheduling algorithm.
On the contrary, when the load is high the differences
between the two scheduling policies become signifi-
cant. In particular, for the highest request rate, the
service time with DRR is ∼ 70% smaller than the one
obtained with FCFS.

To have a DRR WorkQuotient equal to O(1), QS
should be equal to the maximum time a client may
need to perform an action (as specified in [30]). In our
scenario, this could be done by using the parameters
of the slowest (in terms of capacity value) connection
the system has to cope with (QS = RTTslowest +

(kslowest ∗ P )/Cslowest), in practice by using the pa-
rameters of the GPRS connection. Nevertheless, we
observed that selecting the value of QS according to
this principle provides less benefits with respect to
the ones shown in Figure 14, which have been ob-
tained using a smaller value (approximately 1/3).
This is explained by the fact that in our scenario
flows are not backlogged, and thus using a smaller
QS provides increased fairness.

6. Validation and experimental results

The mechanisms behind SmartProbe and their im-
plementation were validated by measuring the bottle-
neck capacity in a scenario where the ground truth
was known in advance. The scenario consisted of
a smartphone running the SmartProbe client and a
BCES connected to the Internet (Figure 8). The
bandwidth of the connection between the BCES and
the Internet was artificially limited to a set of known
values using Dummynet [31]. In the first configura-
tion, smartphone connectivity was obtained via Wi-
Fi through a local access point. Results are shown
in Figures 15a and 15b: for the considered range
(1 Mbps - 15 Mbps) all the capacity values registered
by SmartProbe perfectly correspond to the values set

11
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(a) Deficit round robin: QS is added to DC of the first
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Client 1(EDGE)

Client 2(GPRS)

Client 3(LTE)

QS

Round Robin Pointer

100

DC
25

100

0

100100100

757575

505050505050

(b) Deficit round robin: the first element of the first
queue is scheduled, QS is added to DC of the second
queue.

Figure 13: Client operations are scheduled according to a Deficit Round Robin policy.
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Figure 14: Service time with DRR and FCFS.

using Dummynet (for both directions). In the sec-
ond configuration, the smartphone was connected to
the Internet via its cellular interface. The considered
range was 0.1 Mbps - 1 Mbps and the obtained results
are shown in Figures 15c and 15d. Again, in down-
load, the capacity value measured using SmartProbe
exactly matches the bandwidth limitation imposed
by Dummynet. In contrast, as far as upload is con-
cerned, the measured value and the imposed value
start to diverge when the artificial bandwidth limita-
tion becomes greater than approximately 600 Kbps.
This is due to the fact that SmartProbe measures the

bottleneck capacity of the whole path between the
smartphone and the BCES involved. In fact, when
the limitation imposed by Dummynet is large, the
bottleneck capacity is not located on the link that
connects the server to the Internet, but on the cellu-
lar connection between the smartphone and the base
station. Thus we can reasonably say that in all the
considered cases SmartProbe was able to provide an
exact measure of the bottleneck capacity (when the
bottleneck is the artificial one on the link between
BCES and the Internet) or a credible value (when
the bottleneck is located on the uplink between the
smartphone and the cellular base station).

To further validate SmartProbe, the system was
also tested in a configuration where the link with nar-
rowest capacity was the wireless one. This additional
validation was carried out because in many real sit-
uations the wireless link acts as the bottleneck. The
considered scenario is similar to the one depicted in
Figure 8. The capacity of the wireless link was artifi-
cially restricted by forcing the bitrate of the wireless
interface to specific values (the same approach has
been used in [32]). The values we used correspond
to five of the slowest supported bitrates of IEEE
802.11n. The capacity estimated by SmartProbe was
compared to the one reported by D-ITG [33], which is
not only a popular and reliable platform for generat-
ing traffic, but also a network measurement tool. Fig-
ure 16 shows the results averaged over ten repetitions
(only download for the sake of brevity, same findings

12
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(b) Wi-Fi - upload
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(c) Cellular - download
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Figure 15: Validation: observed bottleneck capacity against bandwidth limitation imposed on the server.
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Figure 16: Validation when the bottleneck is located on the
wireless link: capacities reported by SmartProbe and D-ITG.

have been obtained for upload): the capacities re-
ported by SmartProbe and D-ITG are very similar for
all the considered modes of operation. The average
absolute difference between the two tools is ∼ 3.9%.
We believe this is a rather small value for this type of
measurements, especially considering that the stan-
dard deviation of SmartProbe results is, on average,
equal to ∼ 1.3% of the reported capacity.

We evaluated the bandwidth-saving characteristics
of SmartProbe. To this purpose, we compared the
amount of traffic generated by SmartProbe with the
one produced by a technique based on the PBProbe
algorithm. We considered Dthresh = 10 ms for our
smartphone-based scenario, as previously discussed.

Let us suppose that the bottleneck capacity is im-
posed by a 802.11g link. The technique based on
PBProbe initially sends a train composed of two
packets. The dispersion registered by such packet
pair is below the threshold, thus the length of the
train (excluding the first packet) is increased ten-
fold, and another train composed of eleven pack-
ets is sent. Also this train experiences a dispersion
that is below the threshold, thus the length of the
train is again increased tenfold. The train length is
now sufficient for obtaining D ≥ Dthresh and other
trains with the same length are sent until n = 200
trains are received. This approximately generates

30.3 MB of data. SmartProbe starts the estimation
using n = 60 and k = 46 (see Table 1) for a total
of approximately 4.1 MB, about 13% of the traffic
generated by PBProbe. In addition, even consider-
ing the worst case in which a persistent packet loss
causes the length of packet trains to decrease to the
smallest value, i.e. k = 2, SmartProbe would require
7.8 MB of data3, which is still 26% of data sent by
PBProbe. Results for other types of wireless net-
works can be found in Table 2. The amount of traffic
is reduced up to 96%. By sending a smaller amount of
data, SmartProbe obtains obvious benefits in terms
of battery consumption and economic costs.

Finally, SmartProbe was tested in presence of real
background traffic. In this case, the bottleneck capac-
ity of a Wi-Fi network was estimated several times
to assess the stability of the results. Measurements
were carried out during normal work hours, with a
background traffic generated by 20-30 people. The
experimental setup is the one shown in Figure 8. We
performed 100 measurements every hour from 8AM
to 4PM, with n = 60, running the tool with variable
network loads. Results are depicted in Figure 17 in
terms of median, inter-quartile and 90th percentile.
Results are quite stable around the median value,
showing that SmartProbe is not strongly affected by
the different levels of traffic encountered during the
period considered.

7. Mapping the performance of mobile broad-
band operators with crowdsourcing

To demonstrate the use of SmartProbe in a crowd-
sourcing scenario, we implemented an application
that maps the performance of mobile broadband op-
erators with the help of the masses. Every time a user
estimates the bottleneck capacity, the results are geo-
referenced and transferred to the main server, where
they are saved onto persistent storage. When a large
number of measurements are collected, these can be

3In the worst case, SmartProbe would send firstly n = 60
trains with k = 46, then n = 60 trains with k = 23, and so
on with k = 11, 5, 2, leading to a total of 5220 packets, i.e.
7.8 MB of data
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Table 2: SmartProbe: traffic generated in comparison with PBProbe.

Network PBProbe [MB] SmartProbe [MB] SmartProbe worst case [MB]

Wi-Fi 802.11
b 3.3 1.0 1.6
a,g 30.3 4.1 7.8
n 300.5 33.8 67.1

Mobile 2G
GPRS 0.6 0.2 0.2
EDGE 0.6 0.2 0.2

Mobile 3G
UMTS 3.3 0.3 0.4
HSPA 30.3 1.2 2.2

Mobile 4G LTE 300.5 24.6 48.8

 0

 5

 10

 15

 20

 25

 30

 35

 9  10  11  12  13  14  15  16  17  18

C
ap

ac
ity

 [M
bp

s]

Hours

Median
Quartile

90th percentile

(a) Wi-Fi - download

 0

 5

 10

 15

 20

 25

 30

 35

 9  10  11  12  13  14  15  16  17  18

C
ap

ac
ity

 [M
bp

s]

Hours

Median
Quartile

90th percentile

(b) Wi-Fi - upload

Figure 17: Measurements in the presence of real background traffic.

Figure 18: Mapping the performance of mobile broadband op-
erators with crowdsourcing: considered area.

used to build a map that shows the real performance
of mobile operators in relation to user positions. This
information is obviously useful for future subscribers,

as they may be interested in the real performance of
operators in the area where they spend most of their
time.

We used this proof-of-concept application to esti-
mate the bottleneck capacity at different locations in
a suburban area in Italy (Figure 18). For each loca-
tion the bottleneck capacity was estimated using an
Android smartphone connected to the Internet via
two different mobile broadband operators (two of the
major operators available in Italy, here indicated sim-
ply as “Operator 1” and “Operator 2”). In addition,
for each operator the measurement was repeated ten
times. Figure 19 shows the performance of the two
operators (only downlink for the sake of brevity) at
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Figure 19: Mapping the performance of mobile broadband op-
erators with crowdsourcing: results.

Figure 20: Location of SmartProbe users.

the four selected locations (which correspond to four
houses). In all cases, Operator 1 provides the best
performance. This demonstrates that if a measure-
ment is collected at a given location, the result is
reasonably stable and can be useful for all possible
future subscribers who live in the surrounding areas.

8. Long term evaluation

At the time of writing, SmartProbe has been op-
erational for approximately one year. The geograph-
ical distribution of SmartProbe users is depicted in
Figure 20 (more in detail, it represents the locations

Table 3: Normalized number of measurements per access tech-
nology (%).

GPRS 0.1
EDGE 1.1
UMTS 4.6
HSUPA 0.5
HSDPA 8.6
EVDO A 4.9
EVDO B 4.6
EHRPD 2.3
WI-FI 73.8

where measurements have been carried out). The
majority of users is located in Europe and North
America, with several users also in South America
and Asia. Africa and Oceania are, on the contrary,
not much represented. As already mentioned, results
are sent to a central server where they are saved onto
persistent storage. To preserve users’ privacy the ID
of the device is anonymized and no personal informa-
tion is transferred to the server.

The normalized number of measurements, for the
different access technologies, is reported in Table 3.
The number of measurements carried out using de-
clining cellular technologies (GPRS and EDGE) is
quite limited. Approximately 1/4 of the measure-
ments have been carried out using 3G technologies
and the remaining ones concern Wi-Fi links.

Figure 21 shows the cumulative distribution func-
tion of upload and download capacity as registered
by the users of SmartProbe during the period of op-
eration. The total number of measurements is 3350:
1730 for upload and 1620 for download. Measure-
ments include both Wi-Fi connections and cellular
connections (these latter are grouped by access tech-
nology). As expected, 3G technologies provide the
best results for cellular connections and with EHRPD
the download capacity is even larger than Wi-Fi.

These results must be interpreted as a first out-
come of the crowdsourcing-based technique we pro-
pose. In any case, even considering the limited pe-
riod, they clearly demonstrate that aggregating in-
formation collected by volunteers, to provide global
metrics in terms of bottleneck capacity, is feasible.
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Figure 21: Upload and download capacity (CDF) collected during approximately one year of operation.

Obviously, a deeper and more detailed analysis will
be possible when a larger amount of measurements
are available. It is worthwhile to remember that all
the measurements have been triggered by real users
who voluntarily joined the system. As known, in-
creasing the number of participants in a crowdsensing
scenario is not easy, as specific incentive mechanisms
have to be designed and put into practice (but this is
outside the scope of this work) [34].

Figure 22 shows the bottleneck capacity registered
when using the five largest Italian mobile broadband
operators. This kind of analysis has been restricted
to Italy because for other countries the amount of
measurements do not allow us to draw statistically
sound conclusions. As evident, one of the operators
provides significantly better performance in terms of
both upload and download capacity. Although these
results, at this stage, cannot be used to perform a
thorough comparison of cellular operators, they al-
ready provide a first insight of the diffusion of cel-
lular technologies among the considered companies.
In general, a country-wide analysis like this can be
used by customers to be informed about the global
performance of operators. On the other side, an an-

notated map like the one presented in Section 7 can
be extremely useful to obtain geographic-dependent
information.

9. Related work

This section summarizes the most significant work
related to the estimation of bottleneck capacity and
to the use of crowdsourcing for network measuring.

9.1. Estimation of bottleneck capacity

The first tool focusing on the discovery of the bot-
tleneck capacity was developed by Van Jacobson in
1997. Since then, a plethora of tools have been de-
veloped for wired networks, typically based on packet
pairs (e.g. Bprobe [35], Pathrate [18], CapProbe [19]
and TOPP [36]) and packet trains (e.g. PBProbe
[20] and Cprobe [35]). Since these tools are not con-
ceived for wireless environments, the results can in
some cases be inaccurate. Recently, some dedicated
tools based on packet pairs have been developed to
infer the bottleneck capacity of wireless links (e.g.
WBest [22] and AdHoc-Probe [21]). However as these
tools are based on packet pairs, they can suffer from
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Figure 22: Upload and download capacity (CDF) of major Italian cellular operators.

compression and expansion phenomena. Tools based
on packet trains are able to minimize the effects of
interrupt coalescence and timer resolution, but they
still suffer from contending traffic interference. Of
all these methods, PBProbe is the best performer on
wireless networks [20]. However, as already stated,
the amount of traffic generated by PBProbe is not
optimized, and its use on smartphones is resource-
demanding. To the best of our knowledge, Smart-
Probe is the first attempt towards a full adapta-
tion of bottleneck capacity estimation techniques to
the smartphone platform. The only tools for smart-
phones implemented so far are focused on estimating
the bulk transfer capacity [37], i.e. the amount of
data that can be sent between two ends via TCP
(which, as already discussed in Section 3, is different
from the bottleneck capacity [15]).

One of the first works where the problem of mea-
suring the bandwidth is contextualized to a wireless
scenario is the one by Johnsson et al. [38]. In par-
ticular, the authors discuss the effects caused by the
probe packet size and cross-traffic on the estimation
process when 802.11 wireless links are used.

A performance assessment of four tools for capac-

ity estimation when operating on 802.11 links is pre-
sented in [39]. Experiments have been carried out in
a semi-anechoic chamber, in order to evaluate the
tools in a controlled and interference-free environ-
ment. Repeatability of procedures and the use of
a digital storage oscilloscope allowed the authors to
collect extremely accurate timestamps and to deeply
study the interaction between capacity estimation
tools and network interface cards.

9.2. Crowdsourcing for evaluating network properties

The crowdsourcing approach has been used to eval-
uate and measure network properties both in wired
and wireless scenarios.

DIMES is a distributed measurement infrastruc-
ture that collects information on the topology of the
Internet and its evolution [12]. The key idea behind
DIMES is a shift from dedicated measurement ar-
chitectures to a large community of volunteers: each
participant runs a monitoring agent that carries out
traceroute- and ping-based campaigns, then results
are aggregated to produce a map at the autonomous
system level of abstraction. Besides parallelization of
workload, the heterogeneity of participants in terms
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of location provides the opportunity to measure the
Internet from different points of view. This is a signif-
icant improvement compared to solutions character-
ized by a relatively small number of vantage points.
In summary, crowdsourcing is beneficial not only in
terms of raw power, but also because of the specific
nature of every individual participant.

Dasu is an experimentation platform that supports
measurement activities at the Internet’s edge on end
user machines [13]. Dasu has been implemented as
an extension of a peer-to-peer client (BitTorrent) to
leverage its popularity and wide coverage. An ex-
periment administrator can assign tasks to the par-
ticipating clients. The measurement activities to be
executed on user devices are specified through sim-
ple “when-then” rules and comprise both active tools
(ping, traceroute, etc.) and passive data collectors.
The availability of a large number of cooperating
users supports the execution of large scale experi-
ments aimed at studying routing asymmetry and In-
ternet topology.

Similarly, crowdsourcing has been used to detect
service-level network events [40], and to characterize
ISPs and evaluate their performance [41]. Also in
these cases, the BitTorrent client has been adopted
as the implementation platform, since P2P sessions
are network-intensive (this enables the passive col-
lection of information) and characterized by long ses-
sions (thus providing extensive monitoring periods).
The unique perspective of participants and the in-
volvement of a large number of end-users enable the
collection of an unprecedented amount of information
on the status of the network, especially at the edges
of the Internet.

BSense is a system aimed at creating maps con-
cerning the quality of broadband connections [42].
The system relies on a software agent that is exe-
cuted on broadband users’ machines. The agent pe-
riodically measures the latency, packet loss rate, and
bandwidth of the broadband connections, then it up-
loads the obtained results onto the BSense server.
The framework has been tested with the help of 60
volunteers located in a Scotland region. Differently
from SmartProbe, BSense is not specifically designed
for estimating capacity in a wireless scenario: the
default configuration for the download and upload

sessions uses 8 concurrent UDP/TCP flows at 400
packets/s, with 1024 byte packets.

A large study about broadband performance is pre-
sented in [43]: latency, packet loss, and throughput
measurements have been collected from nearly 4000
users and across 16 ISPs in USA. The largest part of
monitored homes relies on gateways specifically de-
ployed for studying network performance from the
point of view of residential users. In particular, run-
ning experiments from such vantage points enables
fine grained control on confounding factors, such as
cross traffic or home wireless networks.

Hobbit is a measurement platform for broadband
monitoring [44]. The platform includes measure-
ments clients executed on users’ machines, measure-
ment servers that cooperate with clients, and a man-
agement server for coordinating activities, planning
experiments, and collecting results. A deployment of
400 clients has been used to study the performance
of a set of ISPs in terms of fixed broadband access.

We believe that SmartProbe represents a signif-
icant addition to the landscape depicted above: it
shares with these systems the key idea of using peo-
ple as a means for evaluating the properties of large-
scale networks with limited efforts, and expands ex-
isting work with bottleneck estimation in a wireless
scenario.

Cognitive radios (CRs) are intelligent wireless com-
munication systems that adapt their behavior to
changing spectral conditions [45]. By automatically
adapting their parameters of operation to the net-
work status, CRs are able to more efficiently use the
radio spectrum and to provide reliable communica-
tion [46]. In [47], the authors discuss the use of radio
environmental maps (REMs) for cognitive wireless
regional area networks. REMs operate as an inte-
grated database that characterizes the radio environ-
ment using geographical information, spectral regu-
lations, location and activities of radios, and policies.
REMs are updated using observations produced by
CR nodes, which in turn receive relevant information
through the CR network itself. To a certain extent,
part of the content of REMs is generated according to
the crowdsourcing paradigm. Similar ideas are also
discussed in [48, 49].

At first glance, these maps and the one produced

19



by SmartProbe could be considered as similar. How-
ever, a more extensive analysis makes it clear that
the purpose of REMs and SmartProbe maps is to-
tally different and that the two systems operate on
completely separate levels. In fact, REMs provide
information used to tune the operational parameters
at the lower levels of the networking stack (mostly
the physical layer and the data link layer); the aim
is to improve performance or to make efficient use
of the spectrum. In contrast, the system we pro-
pose produces information dedicated to the user level
and is completely independent of the underlying com-
munication technologies and protocols. Unlike CRs,
SmartProbe does not improve communication effi-
ciency; instead it provides answers to questions like
“which cellular operator performs best in an area of
interest?”. Answers are provided using information
generated by other users via crowdsourcing.

10. Conclusions

The mobile crowdsensing paradigm can be ex-
tremely useful for analyzing the characteristics of
large-scale networks. With the help of the masses it
is now possible to collect an unprecedented amount
of information on the performance of networked sys-
tems. At the same time, the mobility of users and
devices makes it possible to analyze large networks
from a geographical point of view. However, these
opportunities come at the cost of increased technical
complexity. Smartphones are resource-constrained
devices, especially from the point of view of energy
and communication costs, and thus specific energy-
and bandwidth-saving techniques need to be designed
and put into practice. Protocols need to cope with
a possibly large number of users and the back-end
infrastructure has to store and process huge amounts
of data.

We have described the design and implementation
of a mobile crowdsourcing system aimed at measur-
ing the bottleneck capacity of Internet paths. Smart-
Probe generates less traffic than similar tools, in or-
der not to compromise the user experience, and in-
cludes server-side mechanisms to support simultane-
ous measurement requests. The presented applica-
tion demonstrates that a collective and georeferenced

evaluation of the performance of mobile broadband
operators can be used to support intelligent user de-
cisions.
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